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SUMMARY

The regular (RR) to Mach reflection (MR) transition boundary in

pseudostationary flow in air was investigated, with emphasis on the influence

of the shock-induced boundary layer. Nearly 100 experiments were conducted in

the region of the RR-.*4R transition line over a range of incident-shock-wave

Mach number 1.1 < Ms < 6.5 by conducting experiments in the UTIAS 10 x 18 cm

Hypervelocity Shock Tube. The wedge angles used were 42 , 45 , 47 , and 48 .

Initial pressures were kept as low as possible to maximize viscous effects and

ranged from 0.4 kPa to 100 kPa. A comparison was made between the

boundary-layer thickness, and the deviation of the transition boundary from

inviscid theory. This difference is often called the 'von Neumann paradox'.

It was found that the 'von Neumann paradox' was due to viscous effects.

The deviation of the RR.--MR transition line from the 'detachment' criterion

boundary was found to increase with a drop in initial pressure, in a manner

consistent with boundary-layer theory. The effect of the endwall boundary

layer on the RR-,-MR transition line was more pronounced at low Mach number

(Ms < 2), and a model is proposed to explain this behavior.

Initial pressure was also found to influence the height of the Mach stem

in MR. Lower initial pressure (and hence greater viscous effects) reduced the

height of the Mach stem, which was found to be smaller than the inviscid

prediction in all MR experiments. An explanation for the reduction in Mach

stem height is suggested, but the cause was not thoroughly investigated.
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NOTATION

a speed of sound in a gas

CMR complex-Mach reflection

DMR Double-Mach reflection

f(n) boundary-layer velocity-distribution function

I incident shock wave

k thermal conductivity

kPa kilopascal

K kink, degrees Kelvin

1 length

L horizontal distance from wedge corner

M Mach stem

Mi  Mach number in region (i)

MR Mach reflection

Pi pressure in region (i)

P reflection point in regular reflection (RR)

Pr Prandtl number

r(n) boundary-layer temperature-distribution function
for adiabatic wall

R reflected shock wave

R' second reflected shock wave in double-Mach reflection

s(n) boundary-layer temperature-distribution function
for nonadiabatic wall

S slipstream or contact surface

SMR single-Mach reflection

t time

T triple point

T' second triple point in double-Mach reflection

vi
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T. temperature in region (i)

u flow velocity in the x-direction

Ui  flow speed in region (i)

v flow velocity in the y-direction

AAngstrom

'y specific heat ratio

. angle between the incident and reflected shock waves

6 boundary-layer thickness based on 99% freestream velocity

6 boundary-layer displacement thickness

r, non-dimensional boundary-layer coordinate

Obl boundary-layer flow entry angle

a. flow-deflection angle through the shock wave when entering. region (i)

maximum possible flow-deflection angle through a shock wave

I flow-deflection angle through a shock wave which results in
sonic flow behind shock

6v characteristic vibrational temperature

wavelength of light

absolute viscosity

V kinematic viscosity

0 density

T shear stress, vibrational relaxation time

$ i incidence angle between the flow and shock wave in region (i)

X triple-point trajectory angle

X1' second triple-point trajectory angle

stream function

reflected-shock-wave angle

boundary-layer flow entry angle at nominal distance x =1 mm
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Subscripts

0,1,2,3 thermodynamic regions

c characteristic

e external, freestream

exp experimental

i insulated

K relative to kink

m maximum

r reference, rotational

s shock, sonic

T relative to triple point

t translational

v vibrational

w wall

Superscripts

first-order derivative

'' second-order derivative

third-order derivative
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Chapter 1

INTRODUCTION

When energy is instantaneously released in a material, an explosion

occurs and a shock wave is generated. The shock wave, which causes a sudden

jump in pressure, temperature, and entropy, travels through the material as a

result of molecular collisions. It loses strength by heating the material and

raising its pressure as it races outward from the center of the explosion, and

ultimately weakens to a sound wave.

If a planar shock wave intersects a wedge surface, four different

reflection patterns can occur, depending on the strength of the shock and the

wedge angle. The patterns are regular reflection (RR), single-Mach reflection

(SMR), complex-Mach reflection (CMR), and double-Mach reflection (DMR) (see

Figs. 1 to 4, from Ref. 30). The latter three as a group are called Mach

reflection (MR). The four types have flow fields with different pressure,

density and temperature distributions associated with them. The shock wave

from an above-ground explosion in air would experience several of the

reflection patterns as it intersected the ground on its travel outward [1,28].

There are many examples of both man-made and naturally occurring

shock-wave phenomena [2]. In several of these, the process of

oblique-shock-wave reflection is of great concern. For example, accurate

prediction of the type of reflection and associated pressures is necessary for

the design of shock-resistant structures. Applications range from chemical

plants, where the potential for major explosions always exists, to mobile

missile launchers which must be able to withstand a nuclear blast [3].



The study of oblique-shock-wave reflections began as far back as 1878

when Ernst Mach [4] did research on shock wavws and observed RR and MR. In

spite of this, it was not until the early 1940's that more thorough analytical

and experimental work was done. At this time an analytical criterion for the

transition from RR to MR in nonstationary flow (usually referred to as the

'detachment' criterion) was suggested by von Neumann [5,6].

Under the direction of Bleakney [7] a major study of nonstationary

oblique-shock-wave reflection was carried out at Princeton University. Smith

[8] did an extensive series of experiments and discovered SMR and CMR. He

also found that RR persisted beyond the boundary predicted by the 'detachment'

criterion. This persistence is often referred to as the 'von Neumann

paradox'. Further experimentation by White [9] confirmed this persistence.

. White [9] also suggested a criterion for the transition from SMR to CMR, and

discovered DMR, thus completing the identification of the four major types of

oblique-shock-wave reflection. The most current analytical transition

boundaries for inviscid frozen air are shown in Fig. 5.

Much work has been done since then in defining the regions of RR, SMR,

CMR, and DMR. A study by Kawamura and Saito [10] again confirmed the

persistence of RR into the predicted MR region for nonstationary flows.

Gvozdeva et al [11] and Henderson and Lozzi [12] suggested criteria for the

transition from SMR to CMR, and CMR to DMR but they were not substantiated.

In the same study, Henderson and Lozzi [12] also offered the 'mechanical

equilibrium' criterion for transition from RR to MR in nonstationary flows.

Bazhenova et al [13] attempted to clarify experimentally the regions of RR,

SMR, CMR, and DMR, but like other studies their range of Mach numbers and

wedge angles was limited. Law and Glass [14] did experiments over a wider

1., -2-



range, and later Ben-Dor and Glass [15] established the generally accepted

criteria for transition from SMR to CMR and CMR to DMR. A worthwhile

additional necessary criterion for the SMR to CMR transition was later made by

Shirouzu and Glass [16].

The necessary conditions for the transition from RR to MR in

nonstationary flow are still not fully understood. Work by Hornung and

Kychakoff [17] and Hornung, Oertel, and Sandeman [18] brought forth another

hypothesis, the 'sonic' criterion. It is difficult to resolve experimentally

from the 'detachment' criterion, and thus the 'von Neumann paradox' was still

unsolved. It was suggested by Hornung et al [18] and later investigated by

Hornung and Taylor [19] that the 'von Neumann paradox' was due to the viscous

boundary layer which develops behind the shock on the wedge surface. Shirouzu

and Glass [16] supported this theory but the evidence was still inconclusive.

Hornung and Taylor [19] investigated the influence of viscosity on the

RR4.-MR transition boundary by doing experiments in argon. They held Mach

number fixed, and varied the wedge angle to see the behavior of the size of

Mach stem in MR. This was done for various initial pressures. They assumed

transition to RR when the Mach stem size approached zero. Initial pressure

was found to influence the position of the transition boundary.

It was the intent of this work to further explore the effect of the

boundary layer on the RR-*-v-MR transition boundary, although from a different

approach than hornung and Taylor [19]. The approach taken here was to do

experiments in air over a wide range of Mach numbers and initial pressures,

and to find transition boundary points by doing both MR and RR experiments, in

close proximity to the boundary.

-3-



In this investigation, the objectives were:

1. To determine precisely several RR.-I MR transition boundary points

by doing experiments very close to the boundary.

2. To use the lowest pressure possible to maximize viscous effects.

3. To obtain the deviation from inviscid theory of the reflected wave

angle in RR at the RR -*NR transition boundary.

4. To predict the RR-- *MR transition boundary in air for any initial

pressure and incident-shock-wave Mach number.

The present research continues a long program of study of

oblique-shock-wave reflection supervised by Professor I. I. Glass at the

University of Toronto Institute for Aerospace Studies (UTIAS). Previous

researchers include Molder [20], Weynants [21], Law and Glass [14],

Ben-Dor [22], Ben-Dor and Glass [15,23], Ando [24], Ando and Glass [25], Lee

and Glass [26], Shirouzu and Glass [16], Hu and Shirouzu [27], Hu [28],

Deschambault [29], Deschambault and Glass [30], Hu and Glass [31,32] and Li

and Glass [33].

4

4*
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Chapter 2

DESCRIPTION OF OBLIQUE-SHOCK-WAVE REFLECTION

In this chapter, the types of reflection and conditions associated with

each are discussed for inviscid flow. The effects of viscosity on shock-wave

reflection are treated in Chapter 3.

2.1 Dynamics of Oblique-Shock-Wave Reflection

When a shock wave passes over a wedge in a shock tube, two simultaneous

processes occur [15]:

*(a) deflection of the flow at the wedge corner, and

(b) reflection of the incident shock wave from the wedge surface.

The first of these, deflection at the corner, can take place via

supersonic turning through an attached oblique shock wave (Fig. 6a,b), or

subsonic turning with a detached shock wave (Fig. 6c). In the attached shock

wave cases, the shock will be straight if the flow behind it is supersonic

(Fig. 6a), or curved if the flow behind it is subsonic (Fig. 6b). The

necessary conditions for each configuration are obtained from gasdynamics[34].

The reflection process can take place via RR, SMR, CMR, or DMR. The

speed of the incident shock wave is constant. While there is some attenuation

of the shock wave with time due to the wall boundary layer [36], it is not

significant over very short wedge distances. The flow is pseudostationary,

and consequently a frame of reference can be attached to the reflection point

P in RR and the triple point T in MR. It can also be made self-similar by

transforming the independent variables from x,y, and t to x/t and y/t [35].

Self-similarity makes the shock pattern and the flow-property distributions

retain identical shapes, but increase in size linearly with time.

-5-
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2.2 Types of Oblique-Shock-Wave Reflection

2.2.1 Regular Reflection (RR)

Regular reflection is shown schematically in Fig. 7. It is the simplest

of the four types of reflection since it has only an incident shock wave I and

a reflected shock wave R. The flow at reflection point P must remain parallel

to the wedge. Therefore, the flow deflection through R must be equal and

opposite to the deflection through I. This can be expressed as:

0 1 - 02 = 0 (2.1)

There are actually two possible solutions for the reflected-shock-wave angle,

a strong and weak solution [34]. The weak solution is the only one which is

usually found in practice. The simplicity of the shock configuration makes

calculation of the flow properties fairly easy. Appendix A contains a

description of the method of solution used by Hu and Shirouzu [27].

The reflected wave can be straight or curved near P depending upon the

. Mach number of the flow M2  in region 2. If the flow in region 2 is

supersonic, M2 > 1, relative to P, the reflected wave must be straight since

disturbances from the wedge corner can not propagate toward P (Fig. 8a). For

* subsonic flow, M2 < 1, in region 2 relative to P, R will be curved (Fig. 8b)

since disturbances are propagated from the corner to affect it.

2.2.2 Mach Reflection (MR)p..

Mach reflection is characterized by the appearance of a Mach stem M, and

slipstream S (see Figs. 9 through 11). The necessary condition that flow

remain parallel to the wedge surface implies that the Mach stem must be

perpendicular to the wedge surface. The Mach stem often has some curvature

[16], but is usually approximated as being straight for some analyses.

-6-
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Consider the flow in the vicinity of triple point T. The flow can follow

two paths; the first through regions 0, 1, and 2, and the second through

regions 0 and 3. Reoions 2 and 3 are separated by a contact surface or

slipstream S. Across S, the pressures and flow direction must be equal, and

the density, temperature, and entropy can differ. The boundary conditions are

therefore:

01 - 62 = a3 (2.2)

P2 = P3  (2.3)

As mentioned previously, the flow at T can be considered

pseudostationary, thus X remains constant as the shock travels up the wedge.

The solution of MR is somewhat more difficult than for RR. Appendix A

outlines the method of solution by Hu and Shirouzu [27], which also contains

RR and MR solutions for a wide range of Mach number and wedge angle for

various gases.

The unique properties of each type of Mach reflection are now described.

2.2.2.1 Single-Mach Reflection (SMR)

A schematic diagram of SMR is shown in Fig. 9. In SMR, unlike CMR and

DMR, the reflected shock R is continuously curved from the triple point T to

the wedge corner since the flow in region 2 is subsonic relative to T.

2.2.2.2 Complex-Mach Reflection (CMIR)

Figure 10 shows a schematic diagram of CMR, which differs from SMR due to

the appearance of a kink K in the reflected shock. The kink arises from a

band of compression waves which converge on to the reflected shock at K [12].

-7-



The flow in region 2 is supersonic relative to T for CMR and DMR, and the

reflected shock there is straight.

2.2.2.3 Double-Mach Reflection (DMR)

Figure 11 shows a schematic diagram of DMR, which differs from CMR due to

the appearance of an additional Mach shock (stem) M' and slipstream S' at a

new triple point T' (what used to be the kink K in CMR). The pattern of shock

waves and slipstream is the same for both T and T'. By applying the

gasdynamics equations in the same manner as for the solution at T, the flow

velocities and states can also be solved for at T' [27].
.o'

.

2.3 Transition Criteria
..

2.3.1 RR-MR Transition

Several different criteria have been proposed for the transition from RR

to MR. Each of these is now described.

2.3.1.1 'Dtcmn'Criterion

The 'detachment' criterion was proposed by von Neumann [5,6]. It stated

that transition would occur when the flow deflection through the incident

shock exceeded the maximum deflection possible, 62m' through the reflected

shock (Fig. 7).

61 - 2m = 0 (2.4)

At this point, the boundary condition of tangential flow at the wedge surface

could no longer be satisfied with a RR or 'two-shock' configuration, and MR,

a 'three-shock' configuration, would be necessary. This boundary is shown in

Fig. 12.

-8-
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Consider the shock polar [341 in Fig. 13. The shock polar is for a

constant Mach number M0 in region 0. The 'incident shock' curve represents

all possible flow-pressure ratios in region 1 arising from a flow deflection

I through an incident shock. Curves RI to R5 represent possible

flow-pressure ratios in region 2 after a deflection 02 through a reflected

shock R. The 'Mach stem' curve represents possible states in region 3 arising

from the flow through a Mach stem in MR. If any of the curves, RI to R5,

intersect the ordinate axis, RR is possible since the condition of no net

deflection at the wedge surface is satisfied (Eq. 2.1). If any of the curves,

RI to R5, intersects the 'Mach stem' curve, then MR is possible, since the

necessary conditions of equal pressure and flow direction in regions 2 and 3

are satisfied (Eqs. 2.2 and 2.3).

Five separate cases are represented by RI to R5:

RI: Only RR is possible -- point a

R2: RR and MR possible -- point b

No net deflection, therefore x is equal to zero

for MR (Fig. 9)

R3: RR (pt. f) and MR (pt. c) both possible

R4: RR (pt. g) and MR (pt. d) both possible

Limit of RR reached

R5: Only MR is possible -- point e

The 'detachment' criterion states that as the wedge angle is decreased,

the flow will follow path a-b-f-g (RR) and then jump back to d (MR). In

effect it states that as wedge angle is decreased, with M0 constant, RR will

be maintained until it is no longer physically possible, and only then will MR

occur. It should be noted that the jump from g to d has a sudden drop in

pressure.

-9-



2.3.1.2 'Mechanical Equilibrium' Criterion

The 'mechanical equilibrium' criterion, which was proposed by Henderson

and Lozzi [12], is shown in Fig. 12 for frozen air-, They investigated the

RR-'-HR transition boundary in unsteady flow by reflecting shock waves from

concave and convex wedge surfaces. During transition, both from RR to MR and

MR to RR, neither unsteady expansion waves nor compression waves were seen.

Some hysteresis was noted depending on whether transition was from RR to MR or

MR to RR. Henderson and Lozzi [12] argued that the absence of unsteady

expansion or compression waves implied that the transition process was steady,

in 'mechanical equilibrium'. This criterion for transition was extended to

the pseudosteady case, even though their experiments with flat wedge surfaces

showed persistence of RR below the 'detachment' criterion boundary. These

points which persisted into the MR region were presumed to be MR with Mach

stems so small that they could not be seen.

On the shock polar diagram (Fig. 13) the 'mechanical equilibrium'

criterion is represented by path a-b-c-d-e. Beginning at point a, as wedge

angle is decreased the solution will continue to be one of RR. When point b

is reached however, both RR and MR are possible. According to the criterion,

points lying immediately on either side of the transition boundary should have

the same flow-pressure ratio. Therefore, as wedge angle is further decreased,

MR occurs and the flow is represented by points between b and c. As wedge

angle is further decreased, the path goes to d and e.

At transition (point b):

61 - 62 3 =0 (2.5)

-10-
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By comparison, the 'detachment' criterion states that at b, when the wedge

angle is further reduced, the flow remains as RR until point g is reached.

Further reduction in wedge angle causes 'detachment' to occur and there is an

immediate jump to point d, along with a sudden decrease in pressure ratio.

Many experimenters have shown RR to persist below the 'detachment'

criterion boundary, which is well away from the 'mechanical equilibrium'

boundary (Fig. 12). Some of Smith's data [8], which are quite extensive,

clearly show the persistence of RR (Fig. 14). Some more recent data from

Deschambault [29], which cover a wider range of Mach number, are shown in

Fig. 15. It is the 'detachment' criterion that is now universally accepted

for pseudostationary oblique-shock-wave reflection.

2.3.1.3 'Sonic' Criterion

9 Hornung and Kychakoff [17] and Hornung, Oertel, and Sandeman [18]

proposed yet another theory, the 'sonic' criterion. From a physical point of

view, they suggested that for a Mach stem to form, a length scale would have

to arise as a result of signals transmitted from the wedge corner. For this

to occur, the flow in region 2 relative to P in RR must be subsonic. This

transition criterion is best expressed as:

01 - 02s = 0 (2.6)

The boundary for this criterion is very close to that predicted by the

'detachment' criterion since the flow detachment angle and the sonic angle

differ by only one or two degrees [34], and a resolution between the two

is difficult to achieve experimentally.

Hornung et al [18] also hypothesized that the persistence of RR beyond

the 'sonic' criterion boundary was due to the viscous boundary layer that is
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induced behind the shock waves. Hornung and Taylor [19] later demonstrated

that the transition boundary was affected by changes in initial pressure, in

a relationship consistent with boundary-layer theory. However, their

experiments were only for one particular Mach number in argon. A greater
S'1

discussion of their work can be found in Chapter 3.

For the case of frozen air, a computer program was written to find the

i .RR4-P#R transition boundary for any of the three transition criteria. This

program is listed in Appendix B. The program contains provision for viscous

effects, and can be easily modified to solve for any frozen gas. Its small

size and simple construction makes it adaptable to microcomputers.

2.3.2 SMR-4--CMR Transition

- The existence of CMR was first noticed by White [9] to occur when the

- Mach number in region 2 relative to the triple point was greater than one.

This implies that transition may occur when:

M 2 = 1 (2.7)
T

A mechanism for the transition was proposed by Henderson and Lozzi [12] in

S.. terms of a band of compression waves. Law and Glass [14] and Ben-Dor and
*.

Glass [15] verified that transition occurs according to Eq. 2.7. Law and

Glass [14] also predicted the location of the kink with the equation:

LT / LK = Pi / O (2.8)

where LT / LK is the ratio of the horizontal distance from the wedge corner of

T and K respectively (Fig. 16). Bazhenova et al [13], Ando and Glass [25],

' and Deschambault [29] found that this expression was not valid near the

RR-*-*.MR boundary. They showed experimentally that the ratio approached unity.

-12-
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An additional necessary criterion was added by Shirouzu and Glass [16];

that the angle between the incident and reflected shocks, , must exceed 90

degrees.

s > 90 (2.9)

This has been verified experimentally by Hu [28].

2.3.3 CMR.---MR Transition

Henderson and Lozzi [12] hypothesized that transition from CMR to DMR

occurred when compression waves converged to form the second Mach stem, M'

(Fig. 11). Supporting this idea, Law and Glass [14] and Ben-Dor and Glass

[15] showed experimentally that transition occurred when the tlach number in

region 2 relative to the kink equalled one:

M =1 (2.10)

.
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.1 . Chapter 3

INFLUENCE OF VIBRATIONAL EXCITATION AND VISCOSITY

3.1 Vibrational Excitation

At room temperatures, air behaves as a frozen gas. Only translational

and rotational degrees of freedom are excited. For this frozen or perfect

state, the specific heat ratio, -, is constant, and the Rankine-Hugoniot

relations (Ref. 34) can be aiplied for flow across a shock wave.

At high temperatures, occurring behind a strong shock wave, real-gas

effects come into play. Vibrational excitation, dissociation, and ionization

may be present. Dissociation and ionization occur only for very high Mach

numbers [26], well outside the range of experiments in this study. As such,

they will not be considered further.

To determine the effect of vibrational excitation, two things must be

considered; the magnitude of excitation at equilibrium, and the rate at which

.- equilibrium is approached.

3.1.1 Effect on the RR-o-a-MR Boundary

At equilibrium, the extent of vibrational excitation depends only on

temperature (see App. C). However, the relaxation length to equilibrium

depends on the temperature and pressure of the gas. Oxygen is excited at a

-5 lower temperature than nitrogen. The effect of excitation of either

constituent on the RR ..PMR boundary is to lower it, as shown in Fig. 17. It

can be seen that the maximum effect of oxygen excitation occurs at M ~ 6, and

the maximum effect of oxygen and nitrogen excitation occurs at M ~ 10. It

was approximated that air consists of 20, oxygen and 80/; nitrogen. A more

detailed description of vibrational relaxation is contained in Appendix C.

-14-
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For vibrational equilibrium, the flow across a shock wave does not have

a closed-form solution as does a frozen flow. It must be solved numerically

using the equations of continuity, momentum, energy, and the equation of

state.

3.1.2 Role of Relaxation Length

Upon passing through a shock wave, the translational and rotational

degrees of freedom are fully excited within a few mean free paths, the

thickness of the shock. The vibrational degrees of freedom take much longer

to reach equilibrium. The size of the relaxation zone is dependent on

temperature and pressure (App. C).

To determine whether an assumption of frozen or equilibrium flow is

appropriate, the relaxation length must be compared to a characteristic length

of the region being studied behind the shock wave. If the relaxation length

is much greater than the characteristic length, then the flow in the region of

)interest is in essence frozen. Conversely, if the relaxation length is much

smaller than the characteristic length, then an assumption of equilibrium flow

is more appropriate. Flows are considered in nonequilibrium where the

relaxation length is of comparable size to the characteristic length, and must

*be treated in a more precise way.

3.2 Influence of Viscosity

3.2.1 Characteristics of Shock-Wave-Induced Boundary Layer

When a shock wave passes over a surface, it induces a velocity in the air

behind the shock [363. A boundary layer grows behind the shock wave, due to

the friction between the moving air and the stationary wedge surface. This

boundary layer has a significant effect on the flow at the

-15-

AW-I



shock-wave-reflection point P. In a laboratory-fixed frame of reference, the

flow velocity at the wall must be zero (Fig. 18a). It is convenient though,

to attach the reference frame to the point where the shock intersects the

surface (Fig. 18b). In this reference frame, the flow velocity at the wall

must be that of the wall, relative to the shock. It should be noted that in

this new shock-fixed reference frame, the boundary-layer displacement

thickness, ' , has a negative value, or the wall acts as a sink. Instead of

impeding the flow, the shear stress at the wall tends to 'sweep' the flow away

from the shock wave.

The boundary-layer profile can be calculated by solving the transformed

laminar-boundary-layer equations outlined by Mirels [37,38]. It will be shown

later that the assumption of laminar flow is appropriate, based on the

Reynolds number of the experiments performed. A summary of the equations used

and method of solution is contained in Appendices D and E. Normalized

velocity and temperature profiles are shown in Figs. 19 and 20 for the

boundary layer behind a shock wave travelling at Ms = 2.0, at pO = 2 kPa and

T1 = 300 K. While the boundary-layer size is significantly affected by

pressure, and to a lesser extent by temperature (see App. D), the shape of the

profiles is scarcely influenced by either. Very rapid changes in velocity and

temperature occur close to the wall. Half of the total change in velocity and

temperature within the boundary layer occurs in the first 12%1 nearest the

wall. It is interesting to note that the temperature and velocity profiles

are quite similar, but at the outer edge of the boundary layer, the normalized

temperature only reaches 0.98 compared to the normalized velocity of 0.99.

The most important thing about the equations is the dependence of the

various size parameters on density or initial pressure, and the variation of

boundary-layer size with distance from the shock wave.

-16-
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The relationships are:

6, 6 a (3.la)

6,6* p-i orpi (3.1b)

This implies that if shock-wave reflection is influenced by viscous effects

for a given gas, Mach number M and wedge angle 0w are not sufficient to

define the flow; initial pressure or density must also be specified. While

viscosity may not have a great influence where the Reynolds number is high

(high initial pressures), many shock-tube experiments are done at very low

initial pressures where viscous effects are important.

3.2.2 Physical Model of the Reflection Process in RR with a
Shock-Wave-Induced Boundary Layer

As noted before, many researchers have found significant differences

between experiment and the 'detachment' criterion boundary, the 'von Neumann

paradox' (Figs. 14 and 15). While this difference is one indication of

possible viscous effects, additional information is gained by looking at the

reflected wave angle in RR. If the wave angles near the reflection point P

are measured off photographs from RR experiments, and the flow deflections

through them calculated using the Rankine-Hugoniot equations, it is found that

the flow deflection through the reflected wave R is not equal and opposite to

that through the incident wave I. This difference in angles is defined as the

displacement wedge angle, and is written as:

01 - 02 d (3.2)

and is illustrated in Fig. 21. Displacement wedge angle, Od, is a measure of

the deviation of RR experiments from inviscid theory.
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Reflected wave angles w' from RR experiments by Ben-Dor [22] and

Deschambault [29] were obtained by remeasuring the angle 6 between the

incident and reflected shock waves at a distance of I mm from the reflection

point P, and the results for displacement wedge angle ad are shown in

Figs. 22 and 23 for a = 500 and 600 respectively. Error in measurement

should be quite small since the reflected wave R is straight in the vicinity

of the reflection point P for these cases. Figure 22, which is for RR, has

several theoretical curves corresponding to ed = 0 I, and 2. The curve

for -d = 0 extends only up to M = 1.8, since for Mach numbers greater than

this value and ow = 50° , RR solutions do not exist. Similarily, for ed = 1,

there are no RR solutions for Ow 50° in the range 2.1 < Ms < 3.4. Inws
Fig. 23, the curves cover the whole range of Mach number since RR solutions

exist for all Ms when aw = 60'.

In Fig. 22, where there is a great deal of data, the displacement wedge

angle ed can be seen to increase as Mach number increases. In the most

extreme case, for Ms = 7.3 and Ow = 50 , the displacement wedge angle 0d

exceeds 3'.  Concurrent with an increase in M5 , the experiments had lower

initial pressures, and it is believed that this was the cause of the higher

deviations. It is expected that the same phenomenon will influence the

transition boundary. Figure 23 also shows a deviation from the inviscid

prediction, but insufficient data makes trends indeterminate.

In a general sense, for both RR and MR, the boundary layer serves as a

.* sink. Flow is drawn away from the region by the negative displacement

thickness. If the negative thickness is added to the wedge surface to give a

displaced wall, and the result treated as an inviscid approximation to the

0 viscous flow field, a schematic representation of the physical processes

involved is obtained [19]. This is illustrated in Fig. 24. According to the

-18-



model, an expansion fan exists at the foot of, and behind the incident shock

wave, and compression waves subsequently coalesce to form the reflected shock

wave. The compression waves are due to the decrease in rate of growth of the

displacement thickness 6 . The angle at which flow enters the boundary layer

is henceforth referred to as 'boundary-layer flow entry angle', abl' and its

distribution with respect to x is of the form (see App. D):

tan(obl) = i (6/x) x-  = C1 x- i (3.3)

2

where C is a constant based on the flow properties in the freestream,

external to the boundary layer. The variation of ebl with axial distance, as

defined by Eq. 3.3, is shown in Fig. 25 for a typical boundary layer in air.

At x=O, abl = 90 and the flow enters the boundary layer normal to the surface

(see Fig. 24). At x = 1mm, 6bl is nearly 0°, and the flow is nearly parallel

to the surface. While this model gives a qualitative illustration of the flow

processes involved, quantitative information in the immediate vicinity of the

reflection point P can not be obtained from the simple model for the following

reason. The expansion fan right at point P, which turns the flow normal to

the wedge surface, is not an accurate representation of the real process, but

the result of a singularity in the model which occurs at x = 0 (see Eq. 3.3)

Since the distances being dealt with are so small, one must consider the mean

free path of the gas molecules, and whether or not the flow still behaves as

a continuum. As an example, for a RR at Ms = 2.0, pO = 2.0 kPa, and

T = 300 K, the mean free paLh of air is calculated to be 2.5 x 10-5 mm based

on region 1 flow Since the concept of a continuum (which the model assumes)

can only be applied over a scale greater than several mean free paths, it is

unwise to believe any quantitative results within this distance of P. The

expansion fan and subsequent compression waves within this distance of P are

therefore probably quite different than what is drawn in the model. Accurate

p-19-
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modelling in this region would require kinetic theory which is beyond the

$ \qscope of this work. Note also that the size of these features is so small

that they can not be seen. The model is not based on what is known to occur,

but what is believed will occur.

It is quite clear from the model that the reflection region is very

complex. To calculate the growth of the boundary layer, the freestream

conditions outside the boundary layer must be known. These change with

distance from the reflection point however, ranging from region I flow

properties just behind the incident shock wave, to region 2 flow properties

. further downstream. As a simplification, the boundary-layer growth is

calculated assuming constant freestream conditions based on region I flow

properties.

The results for boundary-layer size at a distance of 1 mm from the

reflection point P are shown in Fig. 26. As anticipated, the displacement

. thickness 3* is zero for M = 1 since there is no flow perturbation behind a

Mach wave, and i* levels off at high Ms

According to the prediction for boundary-layer growth, the boundary-layer

flow entry angle 0bl will range from 900 at point P, to 0 at x = -.

~. However, only a small region near P should influence the reflection process.

The size of this region is the characteristic length of the boundary layer.

In the case of RR, the characteristic length is taken to be the distance from

the reflection point P at which the experimentally determined displacement

wedge angle od9 matches the predicted boundary-layer entry angle obl. This

characteristic length can be calculated by setting 0bl equal to 0d in

Eq. 3.3, and solving for x. This definition of characteristic length is

somewhat arbitrary. It is not expected that something unique occurs where od

and (ibl match, but the distance x at which this happens is believed to be
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representative of the scale of the region of the boundary layer which affects

the reflection process.

3.2.3 Effect of Shock-Wave-Induced Boundary Layer
on the RR4v-MR Transition Line

Henderson and Lozzi [12] performed shock-wave-reflection experiments with

a symmetrical wedge in unsteady flow to eliminate any sidewall boundary-layer

effects, and demonstrated that either the 'sonic' or 'detachment' criteria was

correct. As noted previously, it is very difficult to experimentally resolve

the difference between the two criteria. Hornung and Taylor [191 did an

interesting set of experiments in argon to see the effect of initial pressure

on the RR*-aMR transition boundary. Using a variable-angle wedge, they did

four series of experiments, each with a different initial pressure. The Mach

number was held constant. In each series, the wedge angle was varied, and

they measured the size of the Mach stem in MR. The point at which the Mach

stem would vanish was extrapolated from each series, and taken to be the point

where transition would occur. The results of the four series showed that the

RR-w-o-MR transition boundary was shifted downward. The magnitude of the shift

was greater when the initial pressure was lower, in a manner consistent with

Eq. 3.1b. Unfortunately, their results were only for one shock-wave Mach

number, M = 5.5.
s

As seen in Figs. 22 and 23, the boundary layer alters the boundary

condition of no net flow deflection at the wall (Eq. 3.2). To predict a new

transition boundary, the 'detachment' criterion might still be used, though in

a modified form. Recall that this criterion stated in principle that

transition would occur when RR was no longer physically possible. At this

point, the maximum possible deflection would occur through the reflected shock

wave. Using this same criterion, but altering the boundary condition at the
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wall (Eq. 2.1), the RR-4-PMR transition boundary criterion can be written as:

01 0 2m = 6d (3.4)

The effect of various values of 6d on the transition boundary is shown in

Fig. 27. For each degree of displacement wedge angle, the boundary shifts

downward by approximately 0.70. The shift in boundary varies linearly with

0 d  over the range shown. The distribution of w' along the RR 4,-MR

transition boundary is shown in Fig. 28 for various values of ed' The

reflected wave angle w' is not affected much by 6d' At high Ms, maximum

shift of w is obtained, a reduction of w' of 0.440 for every 10 shift in

Cd .  Like the RR4-*MR transition boundary, the shift in w' varies linearly

with ed .

It now remains necessary to experimentally determine the deviation of the

RR-,-MR transition boundary from the inviscid 'detachment' criterion boundary,

and to correlate the results with the predicted boundary-layer size. This can

be done by:

(1) conducting experiments to obtain several transition boundary points,

(2) measuring the reflected wave angle .',

(3) calculating the net flow deflection through the incident and

reflected shock waves to get the displacement wedge angle od,

(4) equating this 0'd value to the predicted distribution of

boundary-layer flow entry angle obl using Eq. 3.3 to get a

characteristic length.

. A look at flow properties of the inviscid RR solution can indicate which

parameters should affect the influence of the boundary layer on the reflection

process, or displacement wedge angle -d" According to the simplified model of
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Fig. 24, the boundary layer in RR forms in region 1, behind the incident shock

wave. In addition, the reflected shock wave is due to the compressive effects

of the displaced wall which must turn the flow in region 1 back parallel to

this wall. The reflection process is therefore dependent on the flow

parameters, Mi. P1, TI' oI in region 1. The boundary layer has been modelled

using the displacement thickness 6*, which is a measure of the increase of

mass flow in the boundary layer relative to the freestream. Displacement

thickness is defined at freestream conditions Mi, Pl' TI, and by using it to

represent the boundary layer, the influence of p, and T, are accounted for.

The effect of -I and M on the reflection process in the presence of a

boundary layer is still unknown.

The variation of o1 and M1 with Ms is shown in Figs. 29 and 30. It can

be seen that the two parameters are relatively stationary at high Mach number

(Ms > 5.0), and change quite rapidly at low Mach number (Ms < 3.0). The

boundary-layer displacement thickness is also fairly constant for high M5

(Fig. 26). The three parameters which are believed may affect the RRk-0NR

transition boundary shift due to viscosity, Mi, oi, and boundary-layer size

(for fixed po) are all approximately constant at high Ms . It should therefore

be anticipated that for a fixed initial pressure, the displacement wedge angle

0d' and therefore the shift of the RR--MR transition boundary due to

viscosity, should also be relatively invariant at high Ms . As a result, a

viscous RR--P-MR transition boundary should be quite flat at high M (see

Fig. 27).
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Chapter 4

EXPERIMENTAL WORK

4.1 Shock-Tube Facility

Experiments were carried out in the UTIAS 10cm x 18cm Hypervelocity Shock

Tube. This facility has the capability of both cold-gas driven and

combustion driven runs. However, combustion driven runs were not attempted
4

owing to the possibility of damaging the test-section windows when operating

4 ~with high wedge angle [39]. A full description of the facility and its

capabilities can be found in Boyer [40] and Ben-Dor and Whitten [41].

By increasing the pressure in the compression chamber on one side of a

diaphragm until it ruptured, shock waves were sent down the channel. The

driver gas was added slowly so that after the diaphragm ruptured, the shock

.. speed would not be influenced during its time of travel by the additional mass

flow. Shock speeds were controlled by varying the type of driver gas, the

diaphragm thickness and pressure ratio across the diaphragm. The diaphragms

consisted of several sheets of mylar polyester stacked together. The sheets

were available in several nominal thicknesses, and by proper combination

nearly any desired thickness could be achieved. There is a practical limit to

the maximum thickness which can be used since very thick diaphragms do not

break properly and their breaking pressure is unpredictable. For this reason,

the maximum overall diaphragm thickness used was 1.07 mm. The driver gases

used were CO2 and He. Shock-wave Mach numbers up to M = 6.5 were achieved.

While H2 as a driver gas would give even higher shock speeds, the possible

risk of explosion made its use undesirable. For test gas pressure under 26.7

kPa (200 torr), commercially available Medical Grade Air was used. All other

runs used air from the laboratory as the test gas.
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Initial gas temperature was measured by a mercury-bulb thermometer

embedded in the shock tube wall. A minimum of 5 minutes was allowed between

entry of the test gas and reading from the thermometer to allow the

temperature to stabilize. The thermometer scale was marked at 0.1 C

intervals.

The initial gas pressure was measured by a series of Wallace and Tiernan

type FA 160 dial gauges. The range and maximum error of the gauges are shown

below.

Range Absolute Error

1. 0 - 50 torr ( 6.67 kPa) 0.2 torr

2. 0 - 200 torr ( 26.7 kPa) 1.0 torr

3. 0 - 400 torr ( 53.3 kPa) 2.0 torr

4. 400 - 800 torr (106.7 kPa) 2.0 torr

To guard against possible leakage of air into the shock-tube test section,

test gas pressure was checked at the time of admission, and also 5 minutes

after. Leaks which would cause a variation in pressure of greater than 0.05

torr (6.7 Pa) at the time of firing the shock tube were unacceptable and the

runs were aborted. This corresponds to a leak rate of approximately 0.01

torr/min. and was found to be extremely rare.

The incident-shock-wave speed was determined by measuring the time

interval between a common starting point and several stations distributed down

the channel. Time intervals were measured by 5 digital counters using a 1 MHz

oscillator as a common time base. Trigger signals from each station were

obtained using Atlantic LD-25 blast-wave pressure-transducers. Start signal

for all the counters came from stacion D, and the 5 counters were stopped by

signals from stations F, G, H, I, and J. A schematic diagram of the set-up is
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shown in Fig. 31. To allow for deceleration of the shock wave, owing to the

sidewall boundary-layer growth, a second-order best-fit curve was applied to

the measurements from stations F, G, H, and I, and extrapolated to give a

velocity at the center of the test section. The interval at station J was not

used because the shock-wave speed changes significantly after it has passed

over the wedge.

Shock-wave-reflection patterns were recorded using a 23 cm dia.

field-of-view Mach-Zender interferometer. With the exception of 4 experiments

where shadowgraphs were taken, infinite-fringe interferograms were used. Two

wavelengths were used for the interferograms (3971 A and 6943 A) to establish

both qualitative and quantitative results. The 3971 A interferograms give

twice as many fringes as the 6943 A interferograms, but suffer from lack of

contrast. This type of recording was chosen because it gives a great deal of

quantitative density information, and the presence of fringes makes it easier

to see the Mach stem, even when it is quite small. The 4 shadowgraphs were

taken to compare resolution between them and the interferograms, and were

found to be inferior.

The light source for the interferometer was a giant-pulse ruby-laser

incorporating a TRG model 104A laser head, a TRG model 2113-1 harmonic

generator and TRG Pockels Q-switch. The flashlamp capacitor bank of the laser

and the Q-switch were fired at the appropriate times by delaying the trigger

signai from stations F and I respectively. The capacitor bank was fired at

900-s before the Q-switch in order to get a single giant pulse from the laser.

In this mode, the laser delivers 0.8 Joules of light energy in a 15 ns pulse.

1W-r Interferograms were recorded on Kodak Royal-X Pan film, and developed in Kodak

HC-IiO developer. The negatives were developed using twice the recommended

time, to increase the effective film speed (nominal speed is 1250 ASA, an

contrast.
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4.2 Range of Experiments

Experiments were done to determine several RR.4-PR transition boundary

points. Equipment limitations often determined which initial pressure couid

be used. In the low Mach number range (Ms < 1.5), pressures had to be near

atmospheric so that the pressure jump across the incident shock wave was

sufficient to trigger the timing equipment and the laser. At very high Mach

numbers (Ms  < 4.0), very low initial pressures were needed to achieve

sufficiently high pressure ratios across the diaphragm, but at the same time

must be high enough to trigger the equipment. Low initial pressures are

extremely beneficial since they enhance viscous effects.

Experiments were performed over a range 1.1 < Ms < 6.5 using wedges of

42', 450, 47° , and 48 . Pressures ranged from 400 Pa (3 torr) at high Ms , to

101 kPa (760 torr) at very low M s . Typically, to determine a particular

transition boundary point, wedge angle and diaphragm thickness were held

constant. Runs were then done at several different initial pressures. The

Mach number for each run is thus slightly different since the pressure ratio

across the diaphragm is altered. A transition point (po, Ms, ow) is thus

obtained.

It is a desirable condition to vary the initial pressure, pO, and shock

Mach number, Ms, for a fixed wedge angle, 6w' particularly when looking for

a transition point at high Mach number. As discussed in Chapter 3, for a

constant pressure it is expected that the RR.*,.-MR transition boundary on the

(M, w) plane is relatively flat at high Ms  for PO constant.

Experimentally then, if p0  and -w are fixed, and Ms varied, one could

conceivably be doing experiments parallel to the transition boundary, but not
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crossing it. In the low M region where the inviscid transition boundary is

quite steep, this problem should not occur.

It was attempted in one series of experiments (at low M s ) to hold the

initial pressure constant and change the diaphragm thickness to control shock

speed, but it was extremely difficult to find the proper combination of

* diaphragms to achieve the required breaking pressure and shock speed M si. This

method is not recommended. A variable-angle wedge or plunger to rupture the

diaphragm at a desired pressure would solve most of these problems, but the

UTIAS shock tube is not equipped for either. If further work in finding

' transition boundary points is to be done, it is highly recommended that both

mechanisms be used to greatly simplify the experiments.

" 4.3 Measurement of Data from Interferograms

The one drawback to recording shock-wave reflections photographically is

the inevitable problem of interpreting the data. Flaws in the optics and

grain of the film limit the resolution of the interferograms, and can make

determination of the type of reflection difficult and subjective. In the case

of transition from RR to DMR, determination is rather simple. In DMR the two

Mach stems are separate and distinct. Transition from RR to SMR or CMR is

often difficult to see. The Mach stem in MR may be so small that its size is

almost immeasurable, and the fringe dist.ortion caused by the slipstream can be

,.. confused with that caused by the boundary layer.

')ne way of separating the two is to look at the shape of the fringe

distortion. A slipstream should slope toward the wedge surface and distortion

from it appear to decrease in size as distance from the Mach stein increases.

A boundary-layer-induced distortion, if visible, should increase in size as

distance from the reflection point increases.
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Measurement of wave angles is also difficult. For optical reasons, the

reflected shock wave appears to have a finite, measurable thickness (Figs. 39a

and 39b). It also appears to be quite 'fuzzy' near the reflection point. It

was found that a precise and accurate measurement of angle could only be made

at distances of I mm or greater from the reflection point. The angle between

the incident and reflected shock waves, 6, was measured by drawing lines

tangent to the incident and reflected shock waves at a distance of Imm from P,

and trigonometrically determining the angle. Both first and second harmonic

photographs were measured independently. If the angles measured from the two

differed by more than 1.5", they were remeasured until they were within 1.50 .

The wave angle was taken as the average. Wave angles measured by different

people using different techniques can differ by as much as 30 and is highly

subjective. For this reason, one should not be too alarmed by different wave

angles quoted for the same photograph.
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Chapter 5

DISCUSSION OF RESULTS

In this chapter, the experimental results will be discussed in three

separate and distinct sections:

(1) A qualitative look at some of the features observed of the 4

types of reflection

(2) An analysis of the transition boundary shift obtained, and its

relationship to the boundary layer

(3) A brief observation of the effect of the boundary layer on

the Mach stem in MR

5.1 Observed Features RR, SMR, CMR and DMR

Figures 39 through 42 illustrate the four types of reflection obtained,

and reveal some interesting features of the flow. Figures 39a and 39b show a

case of regular reflection (RR). No evidence of a Mach stem or slipstream is

seen at the reflection point P. Some distortion at the wedge surface

indicates the presence of a boundary layer.

There is no physical evidence that the structure of the reflected shock

wave is like the physical model in Chapter 3 (Fig. 24). Rapid curvature of

the reflected shock wave near the reflection point is not seen (Fig. 39b),

--. contrary to the model. This would suggest that the size of region which

dominates the reflection process may be smaller than can be seen in the

interferogram, or that the model is inaccurate and a better one is needed.

For this set of experimental conditions, the theoretical, inviscid

solution is that of Mach reflection (MR), with a triple-point-trajectory angle

X = 2.84 . This is shown in Fig. 39a. The difference between theory and
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experiment is particularily notable in this case, since the initial pressure

is quite high (po = 100.8 kPa). With lower pressure, one would expect even

greater disagreement between theory and experiment.

Figures 40a and 40b show a case of SMR. The M.ach stem is quite evident,

as is the slipstream. Again, the Mach stem is much smaller than the inviscid

prediction. Clearly, the slipstream slopes toward the surface, and it is this

feature which distinguishes it from the boundary layer. In some cases with an

extremely small Mach stem, this is the only way to differentiate between RR

and MR.

Figures 41a and 41b show a case of CMR. The exact position of the kink

K is not certain due to the apparent thickness of the shocks, but the

curvature reversal is quite clear. It is probable that some cases of CMR were

judged to be SMR. Near the RRq*-MR boundary, the kink is very weak, and it is

likely that in some marginal cases it can not be distinguished, even though it

exists. The slipstream emanating from the triple point slopes down to

interact with the boundary layer on the wedge surface. Note that this is a

shadowgraph, so fringes do not appear. In one aspect, shadowgraphs are

superior. The shocks tend to appear thinner and more well defined than in

interferograms.

Finally, DMR is shown in Figs. 42a and 42b. Again, as with SMR and CMR,

the triple point does not follow the predicted trajectory. In this case the

difference is quite large (2.8"), likely due to the low initial pressure

(po = 1.47 kPa), and the resultant large viscous effects.

5.2 RR-P1R Transition Boundary Shift

A summary of the 98 experiments performed is contained in Table 1. T n

addition, they are plotted in the (Ms, w) plane for each wedge angle in Figs.
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32 to 38. From the series of experiments, several points were selected which

were felt to represent the limit of RR, transition boundary points. The

selection of transition points from experimental data is often not clear and

as a result subjective. The difficulty comes about in part from the fact that

both Mach number and initial pressure change in a series, a limitation

dictated by the equipment available (see Chapter 4). Ideally, for a fixed

wedge angle, as the initial pressure is dropped the Mach number will increase

gradually. All the experiments will be one type of reflection, and then at

some point the type of reflection will change from RR to MR or MR to RR. As

Mach number is further increased the type of reflection would not change back.

In this ideal situation the point of transition is quite distinct. Remember

that a transition point is defined by Ms, 0wW and pO. Although far from

ideal, this behavior can be seen in Figs. 32, 33, 35a, 35b, and 38. A

transition point is relatively easy to pick.

In Figs. 34, 36, and 37, the transition point is not so clear. The

regions of RR and MR are not distinct from one another, and there is overlap.

The progression of Mach number with decreasing initial pressure is not smooth.

In cases where MR experiments appeared in what was thought to be a RR zone or

vice versa, runs were repeated in an attempt to check their validity.

However, in these three series of experiments, the RR and MR regions could not

be clearly defined. It then became highly subjective in selecting a

transition point. In Fig. 34 there is some overlap but it is not too bad.

Figure 36 has quite a great deal of it, and the only portion where RR and MR

are separate and distinct is near Ms = 4.0. Figure 37 has two RR points in an

apparent MR zone (M = 4.65, 5.28) but these are not considered valid since

they could not be repeated. Some of the overlap of regions at low Ms is

undoubtedly due to misjudging of type of reflection. MR runs at low Ms are

very difficult to distinguish from RR. The points which were judged to
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represent the limit of RR, or transition, are indicated on each of the figures

and sunarized in Table 2.

An additional transition boundary point is taken from experiments by

Deschambault [29]. In a series of experiments at (Ms = 3.71, ew = 49, PO=

6 kPa) he obtained examples of both RR and MR. It was suggested that the RR

case was actuilly MR, is 1!ch stem not having had time to grow sufficiently

to be seen. In the RR case the shock had travelled 60% of the way up the

wedge. In the MR case, the shock had travelled 80% of the way, and had a

triple-point-trajectory angle X = 1.3. If the RR case were actually MR as

suggested, then one might expect that with x = 1.3", the Mach stem would be

approximately 1.4 mm high at 60% up the wedge surface. A Mach stem of this

size would be quite visible. A more likely explanation for the difference is

that the experiment lies at or very near the RR MR transition boundary.

From an examination of Figs. 35a and 35b, it is quite clear that initial

pressure has an effect on the position of the transition boundary. The two

sets of runs, which have a different range of initial pressures, have

significantly different Mach numbers at transition. The transition point

corresponding to the lower initial pressure has a higher Mach number, which

puts it further from the inviscid transition boundary. This is entirely

expected as viscous effects should be more prominent for cases with lower

initial pressure.

The analysis of the transition boundary points will take the following

steps:

(1) Comparison of the selected transition boundary points with

the inviscid 'detachment' criterion boundary

(2) Comparison of reflected wave angle ,' with that predicted

by the 'detachment' criterion
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(3) Reduction of experimentally determined displacement wedge

angle ed to a common initial pressure

(4) Comparison of ed to predicted boundary-layer size

(5) Calculation of characteristic length

(6) Prediction of a viscous RR4-o-aMR transition boundary for air

The selected transition boundary points are plotted against the inviscid

'detachment' criterion boundary in Figs. 43 and 44. Notice that the deviation

from the inviscid boundary is much greater at high Ms , due primarily to low

initial pressure. The highest deviation from the 'detachment' criterion

boundary is 5.4- in , which occurred for an experiment with ew = 45%

M = 6.21, pO = 0.45 kPa. This behavior, persistence of RR well below the

'detachment' criterion boundary at high Ms, is certainly not applicable to all

gases. Experiments by Hu [28] in SF6 and Ikui et al [42] in Freon-12 show

persistence of DMR above the 'detachment' criterion boundary at high Ms,

These two gases are unique since they both have a low specific heat ratio -(.

One should therefore be cautious in extending the high M5 results of this

investigation in air to other gases without doing a similar analysis.

In the low Ms regime (Fig. '-3), some of the points seem quite close to

the inviscid boundary, and the difference might be taken as insignificant.

However, this is not the case. Only the steep slope of the boundary makes the

.differences appear quite small. Note also (Fig. 26) that the boundary layer

should also be much smaller at low Ms.

It can also be shown that the 'detachment' criterion, which states that

transition will occur when the maximum flow deflection possible occurs through

the reflected shock wave, still seems to hold under the influence of
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viscosity. In Fig 45, measured values of reflected-shock-wave angle WO are

compared to those predicted by a modified 'detachment' criterion (Eq. 3.4).

The variation of reflected-shock-wave angle w' with displacement wedge angle

0d as predicted by Eq. 3.4 is quite small. Experimentally obtained w'

values are close to the predicted values, within experimental error in

measurement. This implies that the concept of the 'detachment' criterion is

still valid.

Due to experimental limitations, there was a wide variety of initial

pressures. Valid comparison of results requires reduction to some standard.

While it may at first seem desirable to reduce results to a common Reynolds

number, this is not chosen for the following reasons. The boundary-layer size

does not reduce to a simple dependence on Reynolds number (see App. D). Also,

it would be a misleading representation since the only valid length scale,

which is necessary to define a Reynolds number, is the characteristic length

which may not be the same for all the experiments.

Instead it is chosen to reduce the results to a common initial pressure.

From Eq. 3.1b it can be seen that any viscous effect can be scaled by initial

pressure. Figure 46 displays the experimentally determined displacement wedge

angle ed, a result of viscous effects, after reduction to an initial

pressure of 2.0 kPa. Remember that ed is obtained by applying gasdynamics of

frozen flow to calculate the flow deflection across the incident shock wave

and the measured reflected shock wave. As anticipated, the displacement wedge

angle od, a measure of departure from the 'detachment' criterion boundary, is

relatively constant at high Ms , with a value of approximately 40. At low Ms,

od  is higher, near 6.5r. This is an unexpected behavior since the predicted

boundary-layer size is much smaller at low Ms  (Fig. 26). The source of

scatter of the two points near Ms  3.8 is unknown.
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To appreciate this difference quantitatively, Fig. 47 shows the ratio

between a predicted boundary-layer size parameter, and the experimentally

determined 6d' As a measure of the predicted boundary-layer size, the

boundary-layer flow entry angle 0bl at a distance of 1 mm from the reflection

point P is used (see Eq. 3.3), and given the special symbol . This

boundary-layer size parameter, : , was chosen instead of 6*/ xi since it has

the same sense as ed 5 both being angles. While less fundamental than 6* /

it is a valid representation, for comparitive purposes, of boundary-layer

size, since it is proportional to 6* / x .

b; .1m (5.1)
,* x=Z1mm

The experimentally determined ad is much larger than 6bl in the predicted

boundary-layer at x = 1 mm. This indicates that the characteristic length of

the boundary layer which dominates the reflection process is much less than

I mm.

Since the displacement wedge angle has been determined experimentally,

and the boundary-layer size 6" / x has been predicted, the characteristic

length can be determined by putting the two values into Eq. 3.3 and solving

for x. This has been done and is shown in Fig. 48. The characteristic length

ranges from 0.0025 mm at low Ms to 0.048 mm at high Ms . With values so small,

it would be impossible to resolve any features in the region of reflection

point P which is dominated by viscous forces. It is also so small that the

previous assumption of frozen flow and laminar boundary layer in the region of

interest is correct. The smallest vibrational relaxation length for the

experiments was found to be 33 mm for 02 in Exp. 62 for which pO = 0.45 kPa
p rflflnr

T =24.8 C, Ms =6.21 (see Fig. C-I). In addition, the maximum Reynolds number
0'

was of the order of 103 based on the characteristic length, much less than
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that at which transition to turbulent flow (10 5) might be expected to

occur [36].

The inability to see any details of the viscous reflection process near

P demonstrates the necessity for numerical codes which can simulate these

processes. Inviscid numerical simulations of shock-wave reflections currently

give excellent results [43], as do codes which approximate the effects of

viscosity [51], but a solution of the Navier-Stokes equations very close to

the reflection point P is still a step beyond. However, rapid technological

advancement of supercomputers should make this possible in the near future.

It was shown in Fig. 47 that the ratio of experimentally determined

displacement wedge angle ad to boundary-layer size parameter Q was much

greater at low Ms. In other words, a boundary-layer of a particular size will

have much more effect on RR at low Ms than at high Ms . It is hypothesized

that this ratio should be dependent on flow deflection 01 through the

incident shock wave for the following reason. The ability of a boundary layer

to influence a reflection process should be affected by the relative size of

the forces involved. The effect of the boundary-layer is that of mass

transfer from the reflection point P. The rate at which mass is transferred

toward the wedge surface after deflection through the incident shock wave is

proportional to sin(e 1 ). If the flow deflection through the incident shock

wave is quite small, then the influence of the boundary layer should be quite

significant compared to the mass transfer towards the wall which gives rise to

the reflection process. At high Ms , the mass transfer in the boundary layer

is less significant compared to the mass transfer toward the wall, so it has

less effect on RR.
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Figure 49 shows the ratio . / od as a function of deflection angle 01

through the incident shock wave. 01 is very close to sin(O 1). The

relationship appears to be close to linear, as might be expected for the

hypothesis given above.

The net result of all this is a prediction (based on experimental

results) of a viscous RR-"VMR transition boundary for air. If a linear

relationship between 2 / od and sin(O 1 ) is assumed (see Fig. 49), and the

result applied to the predicted values of 01 and boundary-layer size parameter

x (Eq. 5.1), a distribution of 6d is obtained. When substituted into the

modified 'detachment' criterion (Eq. 3.2) the result is a new RR4a*-MR

transition boundary. This is shown in Fig.50, for a nominal initial pressure

of 5.0 kPa. Scaling to any other initial pressure is simple, since the

difference between the inviscid and viscous boundaries is a direct function of

initial pressure (Eq. 3.1b). Note that Fig. 50 is quite similar to Fig. 27

since the experimental values for 0d were found to be constant at high Ms,

which is precisely what is plotted in Fig. 27, curves of constant od .

5.3 Behavior of X Near RR.-MR Boundary

In the series of experiments for wedge angles of 47 and 48 , many MR

cases were obtained, with reasonable variation of initial pressure. It is

expected that the boundary layer on the wedge surface will act as a sink and

'pull' the triple point down toward the wedge. The boundary-layer size, and

presumably its influence, should increase with decreasing initial pressure

(see Eq. 3.1b). The difference between the inviscid prediction of

- triple-point-trajectory angle ' and the experimentally obtained value should

therefore be affected by initial pressure. This difference is plotted in
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Figs. 51 and 52 for two sets of experiments. On each graph, a best-fit curve

of the form:

X inv - x = C1 + C2 po
-  (5.2)

is plotted. This form is anticipated since the boundary-layer size is

affected by initial pressure or density in that way (see App. D). There is a

fair amount of scatter in the data, but the trend is quite clear. As the

initial pressure gets lower, the viscous forces increase and the difference

between the inviscid prediction of x and the experimentally measured value

increases. Theoretically, as the initial pressure gets extremely large, the

viscous forces should become negligible and the solution should approach the

inviscid case. Extrapolating the best-fit curves to pO = ' gives:

for e w  48 X.nv -X = 0.64

for w = 47 X. - x = -0.95

The fact that a non-zero value is obtained may be due in large part to

the scatter of data involved. The scatter itself may be affected by the

distance up the wedge thaL the shock has progressed when the interferogram was

taken (see below). Hornung and Taylor [19] did 24 experiments, and were able

to extrapolate their results more closely to the inviscid RR"NR transition

boundary. It is anticipated that if many more experiments were done here, a

more accurate curve might be drawn, with less scatter of data.

The influence of the boundary layer on the triple-point-trajectory angle

X should De dependent on their proximity to each other. As the Mach stem

grows, it gets further from the boundary layer. If the boundary layer is

thought of as a sink, its influence on x should drop off with distance.

Therefore, as the Mach stem grows, the boundary-layer influence diminishes, so
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that the growth of the Mach stem, and therefore X, is inherently non-linear

with time. The existence of viscosity eliminates the self-similarity that

exists for the inviscid process. Any comparison of the triple-point trajectory

angle with inviscid predictions should be done with respect to initial pressure

especially when the initial pressure and x are quite small.

S,. 0
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Chapter 6

CONCLUSIONS

Many RR--MR transition boundary points in air were determined

experimentally by performing shock-tube runs very close to the boundary.

Reflected wave angles were found to be consistent with the 'detachment'

criterion for pseudostationary flow. As anticipated, initial low pressures

enhance viscous effects. As the pressure is lowered, the transition boundary

shifts downward on the (Ms, o w) plane, giving rise to the 'von Neumann

paradox', in agreement with many experimenters. Viscous effects have been

found to be the cause of the 'von Neumann paradox'.

By reducing the experimental results to a common initial pressure, a new

viscous RR-a-P'MR transition boundary for air was drawn and found to be in good

agreement with the 100 experiments. The new transition boundary does not

appear to be valid for gases with low values of y such as Freon-12 and SF6 at

high Mach number.

For a given pressure, the boundary layer has a greater effect on the

transition boundary at lower Mach number, even though the physical size of the

boundary layer is smaller. It is hypothesized that the degree of influence is

inversely proportional to flow deflection through the incident shock wave, due

to the relative size of the mass flow toward the wedge surface behind the

incident shock and the mass flow in the boundary layer.

The model used to approximate the influence of viscous forces could not

be substantiated experimentally, and is assumed to be approximate. It did

however indicate that the characteristic length of the flow is of the order of

0.01 mm, and therefore that the assumptions of laminar boundary layer and

frozen flow as used herein were appropriate. It is felt that correct and
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accurate modelling of the reflection process will probably come about through

numerical codes which incorporate the influence of viscosity through a

solution of the Navier-Stokes equations.

While not directly investigated, results from MR experiments demonstrate

that viscosity also affects the size of the Mach stem. Lower initial pressure

reduces the size of the Mach stem, but scatter of the limited data does not

make for a precise quantitative assessment. This is one area of study which

should be investigated further.

In the most general sense, viscosity plays a vet_ significant role in

oblique-shock-wave reflection. The PPA-41P, traisition boundary is lowered a

significant amount (up to 5-), and the Mjch stem size in MR is reduced.

Previous studies which investigated oblique-shock-wave reflection without

consideration of viscous effects are thereby missing an important factor.

Definition of an experimental point in terms of Ms and w is insufficient, for

oblique-shock-wave reflections are a function of Ms, S w, and initial pressure.

i.l

I'V'
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Table 1

SUMMARY OF EXPERIMENTS

Exp. M PO To X Reflection
No. 4Type

(deg) (kPa) (deg C) (deg) (deg)

33 42 1.185 100.82 22.4 58.2 RR

36 42 1.187 100.82 25.5 57.2 RR

34 42 1.205 77.62 25.0 0.15 SMR

35 42 1.229 70.28 24.0 0.17 SMR

32 42 1.235 66.95 23.4 0.27 SMR

31 42 1.268 50.28 22.1 0.55 SMR

30 42 1.301 38.67 22.9 0.62 SMR

59 45 1.280 46.68 25.3 53.5 RR

58 45 1.299 40.01 25.1 55.5 RR

21 45 1.315 17.08 23.8 55.2 RR

5 45 1.317 34.41 23.7 - 0.19 SMR

6 45 1.334 31.87 24.5 0.25 SMR

20 45 1.344 31.77 23.2 0.16 SMR

22 45 1.358 28.54 22.5 0.22 SMR

24 45 1.373 25.07 24.4 0.28 SMR

25 45 1.392 23.61 23.1 0.31 SMR

28 45 1.393 24 ,27 23.0 0.39 SMR

27 45 1.398 23.47 22.6 0.41 SMR

26 45 1.403 21.74 23.1 0.34 SMR

19 45 1.408 21.44 23.9 0.37 SMR

23 45 1.410 30.14 23.8 0.45 SMR

8 45 1.435 18.67 25.4 0.45 SMR

'-L.v ,' ,'? ' :,', :-:- ./L : '; '..- - - ,:, ------ i -- -,.' " .: .-.L .. -; ,.: -..-: -: .:L.: .: ..-.: --.,,
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Exp. MP X Reflection
No. wType

(deg) (kPa) (deg C) (deg) (deg)

63 45 6.132 0.52 24.5 0.48 DMR

61 45 6.184 0.51 24.4 0.27 DMR

54 45 6.195 0.48 25.0 0.64 DMR

62 45 6.213 0.45 24.8 34.3 RR

56 45 6.236 0.43 24.5 33.9 RR

57 45 6.283 0.41 25.2 33.9 RR

55 45 6.399 0.36 25.1 0.21 DMR

60 45 6.411 0.36 24.0 34.4 RR

10 47 1.407 9.87 24.2 49.1 RR

39 47 1.453 58.15 25.4 0.18 SMR

17 47 1.464 16.54 22.7 48.8 RR

11 47 1.471 7.41 23.0 49.5 RR

40 47 1.509 12.96 25.9 0.17 SMR

38 47 1.533 17.26 24.7 0.27 SMR

12 47 1.540 11.04 23.9 0.19 SMR

18 47 1.556 19.87 22.7 0.45 SMR

15 47 1.583 18.52 22.8 0.59 CMR

13 47 1.588 9.20 23.0 0.40 CMR

16 47 1.594 17.34 22.8 - 0.59 CMR

14 47 1.668 7.20 23.3 0.56 CMR

44 47 4.645 2.01 24.1 33.1 RR

43 47 4.665 2.03 24.8 1.16 DMR

52 47 4.800 2.00 25.8 1.63 DMR

42 47 4.846 2.03 26.3 1.00 DMR

45 47 4.959 2.03 25.0 ---- 1.31 DMR

47 47 5.085 1.87 27.0 1.21 DMR



Exp. 0 M PO T 0 X Reflection
No. Type

(deg) (kPa) (deg C) (deg) (deg)

64 47 5.215 1.59 22.5 0.97 DMR

48 47 5.249 1.60 26.8 1.23 DMR

65 47 5.279 1.47 22.9 32.1 RR

49 47 5.314 1.47 27.0 0.73 DMR

66 47 5.338 1.41 22.0 0.53 DMR

68 47 5.339 1.29 24.3 0.41 DMR

67 47 5.366 1.33 23.4 0.81 DMR

51 47 5.381 1.33 24.0 31.7 RR

71 47 5.416 1.25 24.0 31.6 RR

70 47 5.497 1.19 23.7 32.4 RR

69 47 5.545 1.09 23.3 33.6 RR

95 48 1.445 74.68 24.2 47.0 - RR

91 48 1.466 69.35 24.3 47.0 - RR

97 48 1.472 66.68 24.6 47.1 RR

99 48 1.474 68.68 24.9 47.8 RR

100 48 1.479 82.68 25.4 48.0 RR

94 48 1.483 74.68 23.5 49.1 RR

98 48 1.483 66.68 24.0 47.3 RR

93 48 1.494 70.68 24.2 0.20 SMR

101 48 1.500 74.68 25.5 47.8 RR

96 48 1.531 76.02 24.5 0.22 SMR

85 48 1.539 11.34 23.0 48.2 RR

90 48 1.547 72.02 24.0 0.29 SMR

89 48 1.565 18.67 23.5 47.8 - RR

82 48 1.587 17.34 23.4 47.6 - RR



Exp. e M PO T X Reflection
No. Type

(deg) (kPa) (deg C) (deg) (deg)

86 48 1.597 16.54 23.3 0.27 SMR

88 48 I 1.615 15.34 22.8 0.33 SMR

84 48 1.650 13.34 23.6 0.20 CMR

83 48 1.677 11.34 23.5 - 0.32 CMR

87 48 1.700 9.87 22.7 0.49 CMR

81 48 1.778 7.33 23.3 0.50 CMR

106 48 2.366 6.67 24.6 1.18 DMR

104 48 2.619 4.67 25.4 35.7 RR

105 48 2.637 4.67 25.6 1.37 DMR

110 48 3.103 3.07 24.6 1.47 DMR

115 48 3.627 1.73 24.3 0.53 DMR

113 48 3.732 1.60 23.0 0.74 DMR

114 48 3.810 1.47 23.9 1.04 DMR

112 48 3.897 1.33 22.9 35.7 RR

116 48 3.951 1.20 24.4 34.2 RR

78 48 4.012 6.67 22.4 1.69 DMR

117 48 4.085 1.07 24.7 34.7 ---- RR

77 48 4.211 5.33 23.0 1.81 DMR

79 48 4.371 3.73 24.8 0.36 DMR

76 48 4.414 4.27 22.4 33.2 RR

73 48 4.489 3.75 23.0 0.89 DMR

75 48 4.615 3.27 20.1 30.5 RR

80 48 4.627 1.16 24.9 31.1 RR

74 48 4.791 2.60 22.3 0.11 DMR

72 48 5.045 2.00 24.7 0.13 DMR



Table 2

TRANSITION BOUNDARY POINTS

Exp. 0 M PO
No. w S

(deg) (kPa) (deg)

36 42 1.19 100.82 57.7

58 45 1.30 40.01 54.5

17 47 1.46 16.54 48.8

94 48 1.48 74.68 48.1

82 48 1.59 17.34 47.7

112 48 3.90 1.33 34.9

71 47 5.42 1.25 31.9

62 45 6.21 0.45 34.0

* 966 49 3.71 6.00 31.0

._ * Taken from Deschambault [29]
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(a)

(b)

Figure 1: Regular Reflection (RR)

(a) Schematic diagram
(b) Interferogram

cw d47 , = 5.55, po 1.1 kPa, T= 297 K)
I incident shock wave, R - reflected shock wave,

- wedge angle

w * - " I I * I' ' M



Figure 2: Single-Mach Reflection (SMR)

(a) Schematic diagram

(b) Interferogram (Ref. 29)

( w 20^, NS 3.00, p0 = 20.0 kPa, T 0  299 K)

I -incident shock wave, R - reflected shock wave,

M -Mach stemn, S -slipstream, T -triple point,

- wedge angle
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(a)

4,l

'; (b)

Figure 3: Complex-Mach Reflection (CMR)

(a) Schematic diagram

(b) I terferogram (Ref. 29)

(0w = 30, Ms = 3.09, pO 8.0 kPa, To = 296 K)

0 - wedge angle, I - incident shock wave,
R , R' - first and second reflected shock waves,
M -Mach stem, S - slipstream, T - triple point, K - kink
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Figure 5: Regions of various types of shock-wave reflection
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Figure 6: Possible bow-shock configurations

(a) straight, attached shock

(b) curved, attached shock

(c) curved, detached shock
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Figure 7: Schematic diagram of regular reflection (RR)
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Figure 8: Two possible reflected-shock-wave configurations
at point P in RR

(a) straight reflected shock

(b) curved reflected shock
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Figure 9: Schematic diagram of single-Mach reflection (SMR)

I - incident shock wave, R - reflected shock wave,

M - Mach stem, S - slipstream, T - triple point,

- wedge angle, X - triple-point trajectory angle,

- incidence angle, 0 - deflection angle
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Figure 10: Schematic diagram of complex-Mach reflection (CMR)

I - incident shock wave, R - reflected shock wave,

M - Mach stem, S - slipstream, K - kink, T - triple point,

" - wedge angle, X - triple-point trajectory angle,
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Figure 11: Schematic diagram of double-Mach reflection (DMR)

ew - wedge angle, I - incident shock wave,

R, R' - first and second reflected shock waves,

M, M' - first and second Mach stems,

T, T' - first and second triple points,

S, S' - first and second slipstreams,

X, X' - first and second triple-point trajectory angles
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Figure 17: Effect of equilibrium vibrational excitation
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Figure 18: Boundary-layer velocity distribution in
moving and stationary reference frames [37]

(a) Laboratory-fixed reference frame

(b) Shock-fixed reference frame

' - boundary-layer height

- boundary-layer displacement thickness
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~Figure 19: Laminar-boundary-layer velocity profile behind a

shock wave travelling at NI = 2.0 in+o air atPO = 2 kPa, T0 = 300 K

based on Mirels [37, 38]
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Figure 21: Definition of displacement wedge angle e d

W1' - reflected-shock-wave angle

Mi - Mach number in region i

P - reflection poirt

0. - flow deflection angle in region
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Figure 24: Physical model of the RR reflection process at point P
in the presence of a laminar boundary layer [19]
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on the RR--*HR transition boundary in frozen air
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Figure 29: Inviscid solution for flow deflection 0 1 through

incident shock wave at the RR-H41R transition boundary
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Figure 39b: Interferogram of regular reflection (RR)
Closeup of reflection point P
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Figure 40b: Interferogram of single-Mach reflection (SMR)
Closeup of triple point T

Exp. 27, Ms 1.40, o = 45, 6943 A,

p0 = 23.5 kPa, TO 0 22.6 C
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Figure 42b: Irterferogram of double-Mach reflection (DMR)
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Appendix A

SOLUTION OF FLOW FOR RR AND MR

The flow at an intersection of shock waves is readily calculated by

applying the equations of motion across each of the waves, and using the

proper boundary conditions. The frame of reference is fixed to the confluence

point; triple point T in MR and reflection point P in RR. The equations of

motion across a shock wave are (Figs. A-1 and A-2):

Continuity of tangential velocity:

U i  cos( i )  Uj cos( i- j )  (A.1)

Conservation of mass:

Pi Ui sin(i) =  p U sin( i- j  (A.2

Momentum equation:
2T 2 2

+ Pi Ui2 sin2 ( i) = p. + Uj U2 sin (v-.) (A.3)

Conservation of energy:
+*1 U2 2( . 1 U2 2

h. + I U sin k) = h + U U sin (~i-U.) (A.4)

where subscripts i and j refer to the regions upstream and downstream of the

shock wave respectively.

The two necessary independent thermodynamic variables usually specified

are p and T, thus giving i and h since the equations of state are given by:

,, = j)(p,T) (A.5)

h = h(p,T) (A.6)

If the gas is frozen, a closed-form solution exists.
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For both RR and MR the following substitutions apply:

Incident shock wave I: i = 0 ; j = I (A.7)

Reflected shock wave R: i = 1 ; j = 2 (A.8)

Mach stem M: i = 0 ,j= 3 (A.9)
(except i = c3 )

For clarity, these are illustrated in Fig. A-1 for the case of MR, and

Fig. A-2 for RR.

The variables most often used to define the case under consideration are

Ms and 0 w . The incident flow velocity and direction are calculated by

attaching the frame of reference to point T in MR, or P in RR, and applying

the gasdynamic equations and geometric relationships.

Solution of Flow at T in MR

The boundary conditions are:

P2 = P3  (A.10)

01 - 02 =03 (A.11)

An additional constraint must be specified to solve the equations. It is

assumed that at T, the Mach stem is perpendicular to the wedge surface.

One method of solution is:

I. Guess X and w', and calculate the flow in region 0,

relative to T.

2. Calculate the flow in region 1 by applying the equations of

motion across I.

3. Calculate the flow in region 2 by applying the equations of

motion across R.

A2
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4. Calculate the flow in region 3 by applying the equations of

motion across N.

5. Compare the flow direction and pressure in regions 2 and 3,

and adjust X and L' to try and achieve boundary conditions

A.1O and A.11.

6. Repeat steps 2 through 5 until convergence is achieved.

It should be noted that in some areas of the (Ms, w ) plane, two

solutions for MR can exist [44]. However, the one with lower value of X and

W' is the only one which occurs in practice.

Solution of Flow at P in RR

This configuration is illustrated in Fig. A-2. The only boundary

condition is:

e1 - e2 = 0 (A.12)

The method of solution is very similar to that for T in MR.

1. Guess ,)', and calculate the flow in region 0, relative to P.

2. Calculate the flow in region 1 by applying the equations of

motion across I.

3. Calculate the flow in region 2 by applying the equations of

motion across R.

4. Find the flow direction in region 2 and adjust w' to try and

achieve boundary condition A.12.

5. Repeat steps 3 to 4 until convergence is achieved.

Solutions for RR and MR over a wide range of Mach numbers and wedge

angles were tabulated and plotted by Hu and Shirouzu [27].
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APPENDIX B

Computer Program to find the

RR-MR Transition Boundary in Frozen Air

C ******-**** .** *****************-*********************** -**

C * THIS PROGRAM SOLVES FOR THE RR-MR TRANSITION BOUNDARY FOR FROZEN
C * AIR IT CAN BE EASILY MODIFIED FOR OTHER FROZEN GASES.
C * OPTIONS ARE FOR THE DETACHMENT, SONIC, AND MECHANICAL EQUILIBRIUM

V. C * CRITERIA
C * THE SHORT AND SIMPLE DESIGN ALLOWS IT TO BE TRANSLATED FOR A
C * MICROCOMP&jTER, AND EXECUTION TIME IS MINIMAL.

, C **** ** *4,1 "* 4*4 * * *4* ***** *4 *4 * 4* 4** ****'*** * * 4 *4* * *

C

REAL MS, MO, MI, M2

COMMON G, R
PI=3 141592654

RADDEG=180 0/PI
C
C THERMODYNAMIC GAS PROPERTIES
C

R=8320 1/28 967
G=l 400

C
C OPTIONS

C IOPT = i DETACHMENT CRITERION
C IOPT = 2 SONIC CRITERION
C IOPT = 3 MECHANICAL EQUILIBRIUM CRITERION
C

READ(5.*) NCASE

DO 10 I:1, NCASE

C THETAD IS THE DISPLACEMENT WEDGE ANGLE CAUSED BY THE

C BOUNDARY-LAYER BEHIND THE INCIDENT SHOCK WAVE.
C IT APPLIES ONLY TO THE SONIC AND DETACHMENT CRITERIA
C TRANSITION BOUNDARIES
C

READ( 5. o MS, THETAD, IOPT
IF(IOPT EQ 3) THETAD=O 0
THETAD=THETAD / RADDEG
IF(IOPT LE 2) CALL DETSON(MSTHETAW,THETADPHI1,IOPT)

* IF(IOPT Eg 3) CALL DETSON(MS,THETAWO 0,PHII i)
IF(IOPT EQ 3) CALL MECHEQkMSTHETAWPHI1, IOPT)

C
C CALCULATE ALL THE THERMODYNAMIC STATES

PHl=F'l'2 -THETAW
M)=MS/ .[N (PHI0,
CALL O':,4VE(PHIj, MO, I , , Ml, lO, TI THETAl)
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CALL OSWAVE(PHII, Ml, P1O, TO, M2, P20, T20, THETA2)
OMEGAP=PHI --THETA 1

C
C SWITCH FROM RADIANS TO DEGREES AND OUTPUT THE DATA
C

THETA W=THETAW RAD DEC
PHIO=PHIO*RADDEG
PHIl=PHI I*RADDEG

THETA I =THETAI *PAD DEC
THETA2=THETA2 *RADDEC
THETAD=THETAD*RADDEG
OMECAP=OMEGAP *RAD DEC
WRITE(6, 200) MS,THETAWTHETAD, IOPT, MO, PHIO, THETAIMI0 PlO, TIO,

IPHIl THETA2, M2, P20, T20, OMEGAP
10 CONTINUE

STOP
C
C
100 FORMAT(IH I///,T7, 'MS',T13, 'THETAW', T21, 'THETAD', T30, 'IOPT',

-T41, 'MO', T48, 'PHIO',T55, 'THETA ','T65, M1',T72, 'P1/PO',T80, 'TI/TO'.

2T88, 'PHI1 ',T95, 'THETA2', T105, 'M2', T112, 'P2/PO',T120, 'T2/TO',
3T127, 'OMEGAP',//)

200 FORMAT(1H ,T5, F6. 3, T13, F6. 2, T21, F6. 2, T32., II, T39, F6. 3, T47, F6.
1T55, F6 2, T63, F6. 3, T71, F6. 2, T79, F6. 2, T97, F6. 2, T95, F6 2, T103, F6 2,
2T111, F6 2, T119, F6. 2, T127, F6. 2)
END

C

C
~c

FUNCTION PHIM(M1)

C THIS FUNCTION CALCULATES INCIDENCE ANGLE FOR MAXIMUM DEFLECTION
C THROUGH THE SHOCK WAVE
C

REAL Ml
COMMON G, R
CI=(G+l )/4.*(Ml**2)-l.

C2=SRT((C+l )*(I.+(Q-I. )/2 *(Ml**2)+(G+1 )/16.*(Ml**4)))
PHIM=ASIN(SORT(I /G/(MI**2)*(CI+C2)))
RETURN

END
C

C

C
FUNCTION PHISMI)

C
C THIS FUNCTION CALCULATES THE INCIDENCE ANGLE FOR SONIC FLOW
C BEHIND THE SHOCK

C
REAL MI

COMMON G R
Cl=(G+I )/4 *(Ml*"2)-(3 -G)/4

C2=SGRT((G+1 )*((9 +G)/16 -(3 -0)/B *(Ml**2)+(+I. )/16 *(Ml**4)))
PHIS-AS4 N (SG (l /G/ (MI-**2)*(C1+C2)))
RETURN

END

B2

,,,r.-Y.-,- ," -.,-. -.- ,- -,'. "-- - . ." . -. '"""" - '. - - ' . ' .. " ---. ..-.. , - ., ",-

-,L .-. . ,- . . .. . . . . .. - . . , . ,



C

StjBrUUTINE OSWAVE (PHI 1, Ml, Pl, Tl, M2, P2, T2, THETA)
C
C FLOW PROPERTIES ARE CALCULATED THROUGH A SHOCK WAVE
C

REAL Ml,M2, MIN, M2N
COMMON CR
MIlN=MI*SIN(PHI )
M2N=SGRT( (2 +(G-1 )*(MIN**2)),(2 *G*(MlN**2)-G+I ))
P2=PI*(2. *G/(,+1. )*(MlN**2)-(G-I. )/(G+l ) )
T- =Tj*((I. +(G--l )/2 *(MIN**2_))/(I + G-1.)/2 *(M2N*-on"))
C1 k . )/2 *('M**2)/((MlN**2)-i. )--I

THETA-ATAN(I /C1/TAN(PHIl))
M-2=M2N/S I N(PHI 1-THETA)
RETURN
END

C
C SUBROUTINE DETSON(MS, THETAW, THETAD, PH*I, IOPT*
C

SUBROUTIiNE DETSON (MS, THETAW, THETAD, PHI 1, 1IOPT)
C
C THIS SUBROUTINE SOLVES FOR EITHER THE DETACHMENT OR SONIC CRITERION
C THE FOLLOWING LO.'IC IS USED:
C
C I SET THE MAXIMUM AND MINIMUM POSSIBLE VALUES FOR PHIO
C 2 ITERATE ON PHIO BY BISECTING THE RANGE OF PHIO UNTIL
C THE LIMIT OF RR IS REACHED, WHETHER IT BE THE LIMIT IMPOSED
C BY THE DETACHMENT OR SONIC CRITERIA
C
C

REAL MS, MO, MI,M2
COMMON G, R
EYTERNAL PHIM,PHIS
PI=3 141592654
N=O

C
C MINIMUM POSSIBLE VALUE FOR PHIO

PHIOA=O 0
C MAXIMUM PO3SIBLE VALUE FOR PHIO

PHIOB=PI/2
C
C LOOK FOR BOUNDARY
C

10 PHIOT=(PHIOA+PHIOB)/2
MO=MS/SIN (PHI 0T)
CALL OSWAVE(PHIOTMO, 1.,1 Ml,Pl, T, THETAt)
IF(M1 GE 1 ) GO TO 20

C RR NOT POSSIBLE - PHIO TOO HIGH
FUNCT= C.

GO TO 30
20 PHII=PHIM(Ml)

IF(IOPT EG 2) PHIl=PHIS(Mi)
CALL OSWAVE(PHI1, M1, 1 , 1 ,M2, P2, T2, THETA2)
FU"4C T =THETAl- THETA2-THETAD
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N=N+1
IF(N GT 20) GO TO 50

C

C MAKE A NEW GUESS FOR PHIO USING THE BISECTION METHOD
C

30 IF(FUNCT GT. O. C) THEN
PHIOB=PHI OT

ELSE
PHIOA=PHIOT

ENDIF
GO TO 10

50 THETAW=P-i2 -PHIOB
RETURN
END

C
C -*-*.*-.-- *- '- .*- .*- l- * * * * * *-* * * * * -*H * * * * * * *

C
SUBROUTINE MECHEQ(MS, THETAW, PHI1, IOPT)

C
C THIS SUBROUTINE SOLVES THE MECHANICAL EQUILIBRIUM CRITERION

C THE FOLLOWING LOGIC IS USED:
C
C 1 SET THE MINIMUM AND MAXIMUM POSSIBLE VALUES FOR PHIO.
C 2 CHECK TO SEE IF A SOLUTION IS POSSIBLE BY LOOKING
C AT THE DETACHMENT CRITERION SOLUTION.
C THIS POINT CORRESPONDS TO THE MAXIMUM POSSIBLE VALUE
C FOR PHIO AT THE MECHANICAL EQUILIBRIUM BOUNDARY.

C 3 USE THE BISECTION METHOD TO GET A FIRST GUESS FOR
C PHIO AT THE MECHANICAL EQUILIBRIUM BOUNDARY.
C 4 CALCULATE THE FLOW IN REGIONS I AND 3.
C AND FLOW DEFLECTION THROUGH THE INCIDENT SHOCK.
C 5 ITERATE ON PHIl UNTIL THE DEFLECTION THROUGH THE REFLECTED
C SHOCK IS EQUAL AND OPPOSITE TO THAT THROUGH THE INCIDENT
C SHOCK USE A BISECTION METHOD.
C 6 COMPARE THE PRESSURES IN REGION 2 AND 3.
C 7 USING THE BISECTION METHOD, GET A NEW VALUE FOR PHIO

C AND REPEAT STEPS 4 THROUGH 6 UNTIL CONVERGENCE IS

C ACHIEVED

C
REAL MS, MO, Ml. 2, M3
COMMON 0, R
EXTERNAL PHIM
PI=3. 141592654
N=O

C MINIMUM POS>IBLE VALUE FOR PHIO
PHIOA=O C

C MAXIMUM POSSIBLE VALUE FOR PHIO, THE DETACHMENT CRITERION BOUNDARY

PHIOB=PI/2 .. HETAW
C
C CHECK TO SEE IF A MECHANICAL EQUILIBRIUM SOLUTION EXISTS
C

MO=MS/SIN (PHI 01)
CAL.L OSWAVE(PHIOB, MO, 1 1 .M P , TI, THETAI)
CALL OSWAVE(P [.,'2 , MO, 1 1 ,M3, P3, T3, DUMMY)
PHIIA=PHIM(Mi )

CAILL SW4AVE(PFUtlA,MI,P1, T1,M2P2, T2, THETA2)
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t. .P P' , TO 10
WRITE .~ 'NO MECHANICAL EQUILIBRIUM SOLUTION EXISTS AT',

R c-7 JR N

C LO1'41 K- R THE [3krOUNAR'y

riMS M5 i(.3 4PH I UT
U AL-L. CSWA'E P 14 -1, MO, I I Ml, P1, 1, THETA i
AL'AU. ;3-wAEPf I MO~1, 1 I M3, P3, r3,THETA3)

C SOLVE -r] jjj T~ -1 4,HIEVE NO NET DEFLECTION - uSE BISECTION METHOD
C TO ITERA-i]

C MAXIMUM ; ID-IBLE VALUE OF PHIl
PHIIA=PHIM(M1i

C MINIMUM POSSIBLE VALUE OF PHII
PHIIB=ASIN( I lM I)+. 000001

20 PHI1T=(PHIlA+PHI1B)/2.
CALL OSWAVE(PHllT,M1,PI,T1,M2,P2,T2,THETA2- T)
IF(ABS(THETA2T-THETAI) LT. 1.7E-05) GO TO 30
IF(N2 GT.20) GO TO 40
N 2 =N2+ I

V IF(THETA2T GT THETAl) THEN
PHI lA=PHII1T
ELSE
PHIlB1=PH11T
END IF
GO TO01-

C
C CALCULATE A NEW VALUE FOR PHIO
C USE THE BISECTION METHOD TO ITERATE

0.: C
30 CONTINUE

FUNCT=P3-P2
N=N+1
IF(N. CT.20) GO TO 60
IF(FUNCT GT.0.0) THEN
PHIOA=PHIOT
ELSE

* PHIOB=PHIOT
ENDIF
GO TO tO

C
C ERROR MESSAGES
C
40 WRITE(6,-4) 'NO CONVERGENCE -INNER LOOP OF MECHEQ'

0. STOP

C
60 THETA W-P T /2.-PHIOB

PHII=PHI IT
RETURN
END
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Appendix C

* THERMODYNAMIC PROPERTIES OF AIR

INCLUDING VIBRATIONAL EXCITATION

Each degree of freedom of a gas molecule contributes a share to the total

energy of the molecule. The quantity of energy per unit mass from a fully

excited degree of freedom is RT/2. For a frozen diatomic molecule such as 02

or N2, there are 3 translational and 2 rotational degrees of freedom. The

energy per unit mass is therefore:

et r 5-RT (C.1)
t+r 2

It follows immediately that:

c vt= 5 R (C.2a):'' Vt+r v

c =c + R R (C.2b)
Pt+r Vt+r 2

Therefore:

: c
7
= 1.4 (C.2c)cv  5

for a frozen diatomic molecule.

However, diatomic molecules also have a vibrational cnergy mode, along

the axis joining the two atoms. The energy per unit mass for P vibrational

energy mode is:

ev= RT- Z (C.3a)
(ez  I )

where Z = v (C.3b)

i e



a is called the characteristic vibrational temperature and is unique for

each gas. From Ref. 47:

for 02: 0v = 2270 K

for N2: 0 = 3390 K

Substitution of room temperature (293 K) into Eqns. C.3a and C.3b gives

vibrational energies:

for 02: ev = 0.00335 RT

for N2: ev = 0.00011 RT
.#

Virtually no vibrational excitation occurs at room temperature for air.

As a result of this additional vibrational energy, the specific heats

also change.

/ ~ 2
c t+r+v =c Vt+r e z  (C.4a)

c : R +c (C.4b)
c Pt+r+v Vt+r+v

- Unlike the translational and rotational degrees of freedom, which become

fully excited within a few mean free paths, vibrational equilibrium takes a

relatively long time to occur. The rate of vibrational excitation decays

exponentially to an equilibrium value. Because of the exponential nature of

the excitation process, the relaxation time is defined as the time over which

-l/e or 63.2'% of the final excitation level is reached. It can be expressed

as:

C Cl 1/3
- ex. C2T- C.5)

C2



The values of C and C2 from two sources are listed in Table C-I. It is

important to note that the relaxation tire is inversely proportional to

pressure, and much less dependent on temperature.

The relaxation lengths behind a normal shock wave in 02 and N2 are

plotted in Figs. C-I and C-2. A pressure of 2.0 kPa was chosen as a reference

value for the plots, but correction for any other pressure can be made using

Eq. C.5.

One might expect that the relaxation lengths for oxygen and nitrogen will

differ when the two are mixed as in air. Since oxygen is affected before

nitrogen, its vibrational mode is not affected much by collision with

vibrating nitrogen molecules. As such, the relaxation length of oxygen is

affected very little by the presence of nitrogen [45]. This is not true for

nitrogen however. When nitrogen begins to become excited, the oxygen

molecules are already vibrating, and their collision with the nitrogen

molecules does change the relaxation length of nitrogen. Even with this

change, the relaxation length of oxygen is still much shorter than that of

nitrogen.

C
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Table C-1

Empirical Constants in the

Vibrational-Relaxation-Time Equation (C.5)

Gas C1  C2  Temp. Range Ref.

(atm-vsec) (Deg. K1/3) (Deg. K)

wA

02 2.92 x 10-4  126 1000 - 3700 46

02 5.42 x 10-5  143.4 800 - 3200 47

N2  6.22 x 10-5  202 3000 - 4500 46

N2 7.12 x 10-3  124.1 800 - 6000 47
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Appendix D

LAMINAR-BOUNDARY-LAYER EQUATIONS

This appendix outlines the basic technique used in calculating the

boundary-layer profile behind a moving shock wave. This method of solution is

based on work done by Mirels [37,38]. Recent, more precise methods of solution

exist [48, 49] but were not used due to complexity. The reference frame is

attached to the shock wave, as shown in Fig. D-1, so that the flow (Us - UI) is

steady, and the wall moves with a velocity Us.

The equations which govern the flow in the boundary layer are the same as

those for the external flow; continuity, momentum, energy and an equation of

state. The boundary-layer equations include terms for viscosity ' and heat

conduction k, and in this solution it is assumed that no pressure gradient

exists. For a more general explanation of the equations and their physical

meaning, see Schlichting [50].

The boundary layer equations are:

(., ) + : 0.- &u) +0Continuity (D.1)

Uu + V U _I - Momentum (D.2)

x (u T+ + Energy (D.3)

p = RT Equation of State (D.4)

with boundary conditions:

u(xO) = u (D.5a)

u(x,-) = ue (D.5b)

v(xO) = 0 (D.5c)

T(x,O) =  T (D.5d)

T(x,-) = Te (D.5e)
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Since the flow is continuous, a stream function i exists such that

- Qu (D.6a)

_v 
(D.6b)

Pr

Introduce a similarity parameter

y

=re Tdy (D.7)

0

and rewrite the stream function

=_2UeXv r  f(n) (D.8)

It should be noted that

u = f, (D.9a)
u e

.e fr7 2 f' T (D.9b)

As a simplification, it is assumed that the viscosity and the thermal

conductivity are directly proportional to the temperature.

r (D.lOa)
Tr

kr
k= T T (D.1Ob)

Tr

The choice of reference temperature for viscosity and thermal conductivity is

somewhat arbitrary at this point. A wise choice of reference temperature may

minimize error caused by this simplification [38], and will be discussed later.
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When equations D.8, D.9, and D.10 are substituted into the momentum

equation, it becomes

f"' + ff'" = 0 (D.11)

with boundary conditions

f (0) 0 (0.Ila)

f'(O) U w/ue (D.llb)

f'() 1 (D.11c)

Substitution of equations D.9, D.9, and D.10 into the energy equation

yields:

T' + afT' = -a (X-1) M e2 (f,') 2  (D.12)

assuming the Prandtl number a is constant.

From equation D-12, the temperature distribution can be expressed as

-1 - iM e  r(n) s(r) (.13)

Te 2 [ eeT

where r(n) satisfies

r" + afr' - U 2 (fII) 2  (D.14)

r'(O) = 0 (D.14a)

r (Ho) = 0 (D.14b)

s(n) satisfies

s" + afs' = 0 (D.15)

s(O) = 1 (D.15a)

s() = 0 (D.15b)

and

Te - 1 + Y-- i M r(O) (D.16)
e 2 Ue /MeD
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The temperature distribution is in fact a combination of 2 solutions; the

solution for the case of an insulated wall, plus one for addition of heat
transfer through the wall. Tw' i is the temperature which would occur at the

wall if it were insulated, and r(O) is a recovery factor for the recovery

temperature Tr at the wall, which is less than the adiabatic total temperature.

To get y in terms of f, equations D.7 and D.13 are combined, giving

y! ~e,,-T1eUw T w-T 'u T + [ - I) Me r d + s dri (D.17)

Tr 2 Te f
0 0

Another parameter of interest is

T F,,[( \1 2 fnT i Y 1  w IM e  rd (D.18)

2x 0u m ( -- ) 21 nTr Uee D.8

.. + W wi]>"- Tes d-,Te /
0

The distribution of 6* with axial distance is of the form:

= C x (D.19)

The angle at which flow enters the boundary layer is determined by the rate

at which * grows. The boundary-layer flow entry angle is defined by:

tan() Cd * C x- (.20)b I djx 2 1

04

., x4) C D.0
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Solution of equations D.11 to D.11c and D.14 to D.15b gives a

non-dimensional profile of the boundary layer. The rest of the equations can

then be applied to get velocity and temperature profiles.

The wall temperature used is that of the wall before the shock passes.

This was shown to be quite valid [38] as the conductivity of the wall is much

higher than that of the air, and the wall acts as a large heat sink.

Viscosity and heat conduction do not vary linearly with temperature and

the assumption that they do will only be approximate. To minimize the effects

of this approximation, a specific reference temperature is used. The reference

temperature

Tr = 0.5 (Tw + T e ) + 0.22 (Tw i - T e ) (D.19)

will minimize the error in heat transfer and shear stress at the wall [38].

The method of solution for the non-dimensional profiles is as follows:

1. Solve for the distribution of f

(a) Set boundary conditions D.lla and D.llb for f(O) and

f'(o)

(b) Guess f''(0) and use a Runge-Kutta method to integrate

equation D.11 from Tn=O to n=6 (n=6 is a close

approximation to n = -)

(c) Compare f(6) to boundary condition D.11c

(d) Repeat steps b and c until convergence is achieved

D5
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2. Solve for the distribution of r

(a) Set f(O), f'(O), f''(O) obtained in step 1

(b) Set boundary condition D.14a for r'(0)

(c) Guess r(O) and use a Runge-Kutta method to integrate

equations D.11 and D.14 from n = 0 to n = 6.

(d) Compare r(6) to boundary condition D.14b

(e) Repeat steps c and d until convergence is achieved.

3. Solve for the distributiun of s

(a) Set f(O), f'(0), f''(0) obtained in step 1

(b) Set boundary condition D.15a for s(O)

(c) Guess s'(0) and use a Runge-Kutta method to integrate

equations D.11 and D.15 from n = 0 to r = 6.

(d) Compare s(6) to boundary condition D.15b

(e) Repeat steps c and d until convergence is achieved.

The complete Fortran program for the solution of the boundary layer

equations is listed in Appendix E.

ID6
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APPENDIX E

Computer Program for the Solution of the

Laminar-Boundary-Layer Equations

SUI3LUTINE BLAYER (PE, TE, UE, TW, UW, REYN, DELTA, DELSTAR, THETAD,
I I O j.

C
C THIS -JBRt1, LNE SOLVES FOR THE BOUNDARY LAYER BEHIND A PLANE
C NORMAL £HOCe. WAVE MOVING INTO STILL AIR
C IT IS BASED ON NACA TN 3401 AND NACA TN 3712 BY H MIRELS
C

RE L. ME. NUW, NUREF, A',301, b
REAL Y5 , W1( , 00 , BLF k301, 7)
INTEGER IWK(5.1

C OMMON 'C! PR C I
ExTERNAL FCN,FCNu

C IN[T IALI ZE DATA
C

PP=O 72
C1=O 0
RAIR=287 074

GA[R=l 4
PW=PE

C CLENGTH iS AN ARBITRARILY CHOSEN CHARACTERISTIC LENGTH
CLENGTHl= OE-03

C CALCULATE SOME FLOW PROPERTIES
C

AE=SGRT ,;ADI*RAIR*TE
ME=UE /AE

RHOE=PE'- AIR /TE
RHOW=PW/F PAIR/ TW
NUW=V ISCj( TW) IRHOW
UW UE = UW,, JE

C
C ***4* SOLUTION OF BOUNDARY LAYER DIFFERENTIAL EQUATIONS
C
C Y(1) =F

C Y2) F
C Y(' = F
C y(4, R OR S DEPENDING ON WHICH IS BEING SOLVED FOR

C vW5= P OP S' DEPENDING ON WHICH IS BEING SOLVED FOR
C

S.* SOLVE FOR THE DISTRIBUTION OF F

El



C INITIALIZE DATA FOR IMSL SUBROUTINE 'DCEAR'
C 'DGEAR' INTEGRATES THE BOUNDARY LAYER EQUATIONS USING RUNGE-KUTTA
C
C H, N, TOL, METH, AND MITER ARE PARAMETERS FOR 'DGEAR'
C

N=5
TOL=. 000001
METH=2
M ITE R= 3

C
C SET THE INITIAL CONDITIONS
C
C FPPZ IS F"(0)
C

FPPZ=-0 124425*(UWUE**2)-0. 77505*UWUE.1. 0287
10 X=0.0

Y (2)=UWUE
Y (J)=FPPZ
Y(4)=0. C
Y (5) =0. 0
H= 000001
INDEX=l

C
C SOLVE FOR F-PRIME AT INFINITY (FPI)
C

DO 20 I=1,300
X END=. 02*1I
CALL DCEAR(N, FCN, FCNJ X, YXEND. TOL, MET-4,MITER, INDEX, IWK, WK. IER)

20 IF(IER.NE.0) WRITE(6,*) 'IER IS ',IER
C

F PP ZNEW= FPP Z
FPINEW=Y(2)
IF(IOUT.EG.2) WRITE(6,*) 'FPINEW IS ,FPINEWFPPZ
L=L.-
IF(L.CT 15) STOP
IF(L.CT. 1) GO TO 30
FPPZ=FPPZNEW+0. 05
GO TO 40

C
C CALCULATE A NEW F"(0) -- FPPZ
C

30 IF(ABS(FPINEW-1. OYLT. 1. QE-OS) CO TO 100
FPPZ=FPPZ NEW+(10-FPINEW)/(FPINEW-FPIOLD)*(FPPZNEW-FPPZOLD)

40 FPPZOLD=FPPZNEW
F P IOL D=FP I NEW
GO TO 10

C

C

100 L=O
Ci=-2 0*PFI/((UWUE-1. )**2)
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C
C INITIALIZE DATA FOR IMSL SUBROUTINE 'DGEAR'
C

N=5

* mzTH=2
M 1TER .=3

C SET THE INITIAL CONDITIONS
Ic

C RZ IS FU& )
C

RZ=-&S, OA2*UWUE**2) +0. 0115 5UWUE+C. F8799
110 X= 0 C

Y 1 i0
Y 2) UWUE
Y 3) =FPF
Y (4) RZ
Y (5) =0. C,
H=. 000001

I' INDEX=l
C
C SOLVE FOR R AT INFINITY tRI)
c

DO 120 1=1,300
XEND=.D02*1
CALL DGCEAR(N, FCN. FCNJ X, H, Y,XEND, TOL, METH, MITER. ITNDEX, IWK, WK, IER

C STORE THE NON-DIMENSIONAL BOUNDARY LAYER PARAMETERS FOR LATER USE
ELP(1+1,1)=Y(1)
B LP I +1, 2) =Y('2)
BLF 1+1, 3) =Y (3)
OLP(I+1, 4)=Y(4)
OLP(I+1,5)=Y(5)

120 IF(IER NE 0) WRITE(6,*) 'IER2 IS 'PIER
C

RZNEW=RZ
4..,.RINEW=Y(4)

IF(IOUT EQ. 2) WRITE(6,* 'RINEW IS 'RINEW, RZNEW
L=L+l
IF(L CT 15) STOP

IF(L CT 1) GO TO 130

GO TO 140
C
C CALCULATE A NEW R AT ZERO (RZ)
C
130 IF(ABS'RINEW-0.0) LT .OCE-05) GO TO 200

RZ=RZ'NEI+0 0-RINEW)/(RINEW-RIOLD)*(RZNEW-RZOLD)
140 RZOLD=RZNEW

A. RIOLD=RINEW
CO TO 110
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C *SOLVE FOR THE DISTRIBUTION OF S

200 REC=RZ
L=O

C INITIALiZE DATA FOR IMSL SUBROUTINE 'DGEAR'

C
N 5
TOL= '0OQ001
METH='2

$~ MITER=

CSET THE INITIAL CONDITIONS

C'- SP IS S io

SPZ=O 00672 5*(UWUE**2)-O. 17255*UWUE--0.533
210 X= 0

Y (2)=UWUE
* Y(3)=FPZ

Y(5 =SPZ
H= 000001
INDEXl

C
*. C SOLVE FOR c- AT INFINITY (SI)

c
DO 220 1=1,300

V XEND= 02-1
CALL DGEAR(N,FCN,FCNJ, X,H,Y,XENDTOL,METH5 MITER, INDEX, IWKWK, IER)
BLPI+l, e)=Y(4)

220 IF(IER NE.0) WRITE(b.*) 'IER3 IS ',IER
C

SPZNEW=SPZ
$5. SINEW=Y(4)

IF(IOUT EQ.2) WRITE(6,*) 'SINEW IS ,SINEW, SIOLD, SPZ
L=L-1
IF(L GT 15) STOP
IF(L.GT 1) GO TO 230
SPZ=SPZNEW+0. 05
GO TO 240

C
C CALCULATE A NEW S-PRIME AT ZERO (SPZ)
C
230 IF(ATSSINEW-0 0).LT. jOE-OS) GO TO 300

SPZ=SPZNEW+(0 0-SINEW)/(SINEW--SIOLD)*(SPZNEW-SPZOLD)
2140 SPZOLD=SPZNEW

SIOLD=SINEW
GO TO 210

300 CONTINUE
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C LOAD THE BLF MAlRIX FOR THE ROW CORRESPONDING TO ETA 0

BLP,1I 1)=0 0
ELF> 1. 2) UWUE
BLP, 1 3=FPFZ
ELF 1' 4'=REC
BLF 1 5>rO, 0
ILF1w=1 0
BLF> 1 SP=5Z

I FIO' Nl- E 2) GO TO 320
C
C OUTHUT THiE NIATRIAx OF NON-DIMENSION BOUNDARY LAYER PARAMETEF,.-

DO 310 1 30 15
ETA= 0-1-. 1-1i)
WRITEtiODO 00) ETA, (BLP(1, J), l 7)

1310) CONTINu-E

C

C*USEF BOUNDARY LAYER PROFILE TO DO CALCULATIONS*

C

C INITIALIZE SOME OF THE BOUNDARY LAYER PARAMETERS

3 20 RDN=O C
SODN=0 .
Y0L0-0 C,

C1='t~I-i )2-oUWUE-. )*MEn-A*2
T W I T E*1 +ClI*RE(-)

C REFERENCE TO1- A MEAN TEMPERATURE TO GET A BETTER SOLUTION
CSEE NACA TN 3712

TREF=0 5,,TW TE)40.22*(TWI-TE)
RHOREF=F?-AOE*TE./ TR EF
Nc'REF=YT'-,CO(TREF) 'RHOREF

C
C CALCULAETE BOUNDARY LAYER DATA

Du 4211r2,30

FP=Fk-B , 2)
P BLP (V.4)
S43BLFv 5 ,b)
RDN=RD+(LP(K4)+BLP(K-1,4))/2 * 02

T=TE-1i +C1*R*(TW-TWI)/TE*S)
NHQ=PH0E*#TE/T
C2=TE NUtF7*(ETA+CI*RDN+(TW-TWI)/TE*SDN)
YNEW=ECGPT(2 *NUREFUE)*C2
DY=YNF~w-Y vLD

iOL DzyNRI%



U =UE *FP
C3=(U-UJW) /(UE-JW)
IF(Cc3 LT .99) N=K

C
C LOAD UP THE OUTPUT ARRAY - WHILE CALCULATING Y AT CHAR. LENGTH
C

A(K. I* ETA
A(K(, 2)=YNEW*SQRT'(CLENGTH)
A(K, 3)=U
A(K,4*Y=T
A(K, 5=C3
A (K,6)=T -TW)/(TE--TW)

400 CONTINUE
C
C LOAD THE OUTPUT ARRAY FOR THE ROW CORRESPONDING TO ETA =0

C
A(1,1)=O 0
A (1,2)=0. 0
A(1,3)=UW
A(1,4)&fW
A(1, 5) =0.O0
At.i -6) =&0
IF(IOUT.EQ.2) WRITE(6,*) 'RDN AND SDN ARE ',RDN,SDN

C
C CALCULATE DELTASTAR AT X = 1MM
C

DELSTAR=2.0*CLENGTH*TE/TREF*SQRT(NUREF/2. /CLENGTH/UE)
J,. 1*(ETA-13LP(301, 1)+C1*RDN+(TW-TWI)/TE*SDN)

C
C CALCULATE DELTA AND REYNOLDS NUMBER
C

DELTA=(. Q9-A(N,5) )/(A(N+1, 5)-A(N, 5))*(A(N+1,2)-A(N,2))+A(N,2)
REYN=CLENGTH* (UW-UE) /NUW

C
C NOW TO CALCULATE THE DISPLACEMENT ANGLE
C IT WILL BE A POSITIVE NUMBER BY CONVENTION
C

THETAD=-0. 5*ATAN(CDELSTAR /CLENGTH)
C

IF(IOUT.PEQ 0) RETURN
C

* C FULL OUTPUT OF BOUNDARY LAYER PROFILE
* C

WRITE i6,2000)
WRITE(6-2100) UE,TE
WR ITE (6, 2200) UW,TW
WRITE(6, 2300) UWUE,TREF
WRITE(6, 2400) UE+AE
WRITE(6, 2500 ) REYN
WRITE(6, 2550) -DELSTAR*1000.
WRITE(6,21600) THETAD*57. 2958
WRITE,'6,2700)
WPFITF(6, 2800)
WRIFF(6,2900)
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DO 410 K=1,301,5
410 WRITE( ,3000) A(I, I , A(K, 2)*1000 ,A(K,3), A(K, 4),

I A(K. 2) 'DELTA, A (K, 5), A (K, 6)

RETURN

C FORMAT STATEMENTS

1000 FORMAT H , F4 i,7(5x. F7 4)
2000 FORMAT(ilH1, '*.:,*BOUNDARY LAYER PROFILE DATA*** VERSION 3 ,)
2100 FORMAT. H iU = ',F7 1,' M/SEC' T42, 'TE = ',F7 1,' DE G V.
2200 FORMAT,>A 'UW =,F7 1 M/SEC T42, TW = ,F7 I. DEG V'

300 FORMAT(iH , 'UW/L.)E ,F4. 2,T40, 'TREF = ',F7. 1, ' DEG K'
2400 FORMAT IH , 'UE+AE = ,F7 1, M/SEC')
2500 FORMAT -0, 'REYNOLDS NUMBER (L=iMM ', E9 4)
2550 FORMAT H0, 'DISPLACEMENT THICKNESS (L=IMM) , F5 4,' MM')
2600 FORMATti1l , DISPLACEMENT WEDGE ANGLE (L=IMM) = ',F6.3,' DEG"i
2700 FORMAT(,, H ETA Y U I

1' T U-UW T-TW ')
2800 FORMAl> 1H (MM) (M/SEC)'

I ' (DEG K DELTA UE-UW TE-TW')

2900 FORMAT. H ,---- -,

3000 FORMAT "H ,BX, F3 1, lOX,F6 5. 6XoF7. 1,6X, F7. i, I0XoF6. 4, 6X, F6 4.
16 X, F-b 4i

C
END

C
C 'FCN'\ DEFINES THE E iUATIONS TO BE SOLVED BY 'DGEAR"
C

SUBROQTINE FCN(N, X,Y, YPRIME)
COMMON ,'C/ PR, Cl

INTEGER N
REAL Y(N's,YPRIME(N), X
YPRIME(i l =Y(2)
YPRIME) --,=Y (3
YPRIME(3.' ,=-Y(i*Y (3)
YPRIME(4) =Y(5)
YPRIME(5)=CI*Y(3)**2-PR*Y(1)*Y(5)
R ETUR N
END

C

C 'FCNJ' IS A DUMMY SUBROUTINE FOR THE SOLVER 'DGEAR'
C

SUBROUTINE FCNJ(N, X, Y, PD)
INTEGER N
REAL Y(N),PD(N,N)
RETURN
END

C
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REAL FUNCTION VISCO(TEMP)
C
C THIS CALCULATION USES EQUATION 68 FROM NASA TECHNICAL REPORT
C TR R-50
C

VISCO=I. 462E-C6*SQRT(TEMP)/(I. +112. /TEMP)
C

RETURN
END

Ee
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